
VPH 2014 ABI Software Tutorial
Release 0.1-@VPH2014

Auckland Bioengineering Institute

Sep 18, 2017

Contents

1 VPH 2014 - ABI Software Tutorial 3

2 Auckland Physiome Repository 31

3 OpenCOR 85

4 Musculoskeletal Atlas Project (MAP) Client 121

5 Glossary 149

6 Tutorial to do list 151

7 MAP Client Documentation 153

8 The MAP Client 155

9 Indices and tables 157

i

ii

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

This documentation has been prepared for the session, “VPH tools from the Auckland Bioengineering Institute”,
presented at the VPH 2014 meeting.

This tutorial will demonstrate some of the tools, techniques and best practices developed at the Auckland Bio-
enginerring Institute that aid scientists in the development and application of computational models and simulation
experiments in their work toward the creation of a virtual physiological human. The Auckland Physiome Reposi-
tory provides a framework for the storage, curation and exchange of data. By using standards suitable to their data,
scientists maximise their ability to reuse existing knowledge and enable others to make use of their achievements
in novel work. Annotations ensure scientists are able to find existing data and are also able to correctly interpret
and apply their own data. These tutorials are designed to help demonstrate and promote practices which will aid
attendees in their own work. Attendees are encouraged to raise issues specifically related to their needs with the
tutors.

Documentation for the software used in this tutorial is available online, including the most recent version of the
tutorial itself. This tutorial guides the particpant through various common computational modelling scenarios
faced by scientists working toward the virtual physiologial human. We use these scenarios to achieve scientific
outputs using the covered tools and demonstrating practices we believe will help ensure reproducible and reusable
science.

When interacting directly with Mercurial, this tutorial demonstrates how to work with the repository using Tor-
toiseHg, which provides a Windows explorer integrated system for working with Mercurial repositories.

Note: Brief mention of the equivalent command line versions of the TortoiseHg actions will also be mentioned,
so that these ideas can also be used without a graphical client, and on Linux or OS X and similar systems. These
will be denoted by boxes like this.

This tutorial requires you to have:

• A Mercurial client such as TortoiseHg or Mercurial installed;

• The OpenCOR CellML modelling environment and/or the MAP workflow tool installed; and

• Possibly a text editor such as Notepad++ or gedit.

The tutorial makes use of two primary tools, OpenCOR and MAP Client, as well as the model repository. For
convenience, documentation for each of these projects has been collated here, corresponding to the versions of the
tools used in the tutorial.

Contents:

Contents 1

http://www.ntnu.edu/vph2014/
http://www.abi.auckland.ac.nz
http://www.abi.auckland.ac.nz
http://vph2014-abi-tutorial.readthedocs.org/
http://vph2014-abi-tutorial.readthedocs.org/en/latest/tutorialOverview.html
http://vph2014-abi-tutorial.readthedocs.org/en/latest/tutorialOverview.html
http://tortoisehg.bitbucket.org/
http://tortoisehg.bitbucket.org/
http://tortoisehg.bitbucket.org/
http://mercurial.selenic.com/
http://notepad-plus-plus.org/
http://projects.gnome.org/gedit/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

2 Contents

CHAPTER 1

VPH 2014 - ABI Software Tutorial

This tutorial consists of two independent components that can be worked through in any order. One is the Open-
COR tutorial, which focuses on working with CellML models. The other is the MAP Client workflow tool
focussing on moving data through a series of processing steps. Both of these are able to make use of the Auckland
Physiome Repository to locate, archive, and share data.

Note: The teaching instance of the repository is a mirror of the main repository site found at http://models.
physiomeproject.org/, running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not permanent, and will be overwritten with
the contents of the main repository whenever the teaching instance is upgraded to a new release of PMR2. For this
reason, you can feel free to experiment and make mistakes when pushing to the teaching instance. Please subscribe
to the cellml-discussion mailing list to receive notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for instructions on how to migrate any content from the
teaching instance to the main (permanent) Auckland Physiome Repository.

Tutorial outline

OpenCOR

In this part of the tutorial, we take you through a few common scenarios that a modeller might want encounter
in their daily work, showing how to complete the required tasks using OpenCOR and the model repository. In
the Auckland Physiome Repository, a complete piece of work is stored in a workspace. Each workspace is a
Mercurial repository, which allows the repository to maintain a complete history of all changes made to every
file it contains. In this part of the tutorial, we take you through the creation of a new piece of work, which will
be stored in a workspace. Useful information on working with the repository using Mercurial is available in the
repository documentation.

A new CellML-based piece of work

In this section we are going to create a new workspace into which we will add a CellML model, annotate the
model using OpenCOR, and simulate the model to check that it produces the expected results. We will be using

3

http://models.physiomeproject.org/
http://models.physiomeproject.org/
http://lists.cellml.org/mailman/listinfo

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

the seminal Noble (1962) cardiac cellular electrophysiology model as the demonstration model for this part of the
tutorial.

Create a new workspace

You can find instructions for creating a new workspace on the teaching instance repository in the repository
workspaces documentation. Following those instructions, create a workspace similar to that shown below:

Fig. 1.1: Creating a new workspace to begin a scientific study based on the Noble 1962 cardiac cellular electro-
physiology model.

Once you have created the workspace, you will be taken to the workspace listing page. Take particular note of the
URI for mercurial clone/pull/push, also the same as the current page URL.

Fig. 1.2: A view of the newly created and empty workspace. Note: the workspace URI is unique to every
workspace, so yours will be different to the one shown above.

In order to make changes to your workspace, you have to clone it to your own computer. In order to do this, copy
the URI for mercurial clone/pull/push as shown above. In Windows explorer, find the folder where you want to
create the clone of the workspace. Then, right click to bring up the context menu, and select TortoiseHG → Clone
as shown below:

4 Chapter 1. VPH 2014 - ABI Software Tutorial

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/
http://teaching.physiomeproject.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Paste the copied URL into the Source: area and then click the Clone button. This will create a folder named after
the workspace identifier (a hexadecimal number) that will be empty. The folder will be created inside the folder
in which you instigated the clone command.

Command line equivalent

hg clone [URI]

The repository will be cloned within the current directory of your command line window.

You will need to enter your username and password to clone the workspace, as the workspace will be set to private
when it is created.

Populate with content

We have prepared a copy of the Noble (1962) model encoded in CellML ready for your use. You can download
the model n62.cellml and save it into your cloned workspace folder created above. To verify that the model
works, you can load it into the OpenCOR Single Cell view and simulate the model for 5000 ms. You can plot the
variable V in the membrane component and you should see results as shown below:

Todo

These images need to be updated if there is time.

As long as your results look similar to the above, everything is working as expected. Now is a good time to add
the CellML model to the workspace record. The first step is to choose the TortoiseHG → Add Files... option from
the context menu for your workspace folder (1).

This will bring up the hg add dialog box, showing the files which can be added (in this case, only the n62.
cellml file is available and it is selected by default). Clicking the Add button (2) will inform Mercurial that you
want to add the selected file to the workspace.

1.1. Tutorial outline 5

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 1.3: The arrows highlight the Ending point which should be set to 5000 ms, the button to run the simulation,
and the variable V to be plotted.

6 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

In Windows Explorer, you will see the file icon for the n62.cellml model now overlaid with the Mercurial +
icon (3) to indicate that you have added the file, but not yet committed it to the workspace.

You can now commit the added file to the workspace by choosing Hg Commit... from the context menu in your
workspace folder (4).

This will bring up the commit dialog, which lets you explore and select all the possible changes in this workspace
that you can commit. In this case, there is just the addition of the n62.cellml file to be committed. Before
committing, a useful log message should be entered - this will help you keep track of the changes you make to the
workspace and possibly the reasons for why a given set of changes were made (for example, due to feedback from
reviewers). After entering the log message, click the Commit button to commit the changes (5). The dialog will
stay visible in case you have further changes to commit, but in this case you can just close the dialog.

Once you have successfully committed the change, you will see that the icon for the n62.cellml file has now
changed to a green tick (6) to indicate that the file is up-to-date with no modifications.

Command line equivalent

hg add n62.cellml
hg commit -m "Adding an initial copy of the Noble (1962) cardiac cellular
→˓electrophysiology model to the workspace."

Annotating the model

While we have the model open in OpenCOR, we should have a go at annotating some of the objects in the model.
Full instructions for this can be found in the OpenCOR CellML Annotation view. First, we will follow the example
given in those instructions for annotating the sodium_channel component.

The first step is to switch to the Editing mode (1) (make sure that the CellML Annotation view is selected) and
select the sodium_channel component for annotation (2). We will be using the bio:isVersionOf as the
qualifier for this annotation (3) and searching for terms related to sodium channel (4).

1.1. Tutorial outline 7

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

8 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

We can then add desireable terms from the search results by choosing the button beside the term to add to the
annotations for the sodium_channel component (5).

Have a play annotating other variables and components in the model. When done annotating, make sure to save
the model (File → Save). With the CellML model updated, now is a good time to commit the changes to the
workspace.

Commit changes

As above, choose Hg Commit... from the context menu in your workspace folder to bring up the Mercurial commit
dialog. This time, you will see that there is one file modified that can be committed, n62.cellml (1). As we

1.1. Tutorial outline 9

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

mentioned previously, it is important to enter a good log message to keep a record of the changes you make (2),
and the changes made to the currently selected file are shown to help remind you as to your changes (3). In this
case, OpenCOR has made many changes to the whitespace in the file, as well as adding the RDF annotations at
the bottom of the file.

Command line equivalent

hg diff
hg commit -m "Using OpenCOR to add some annotations to my copy of the Noble 1962
→˓model."

Push back to the repository

Having added content and performed some modifications, it is time to push the changes back to the model repos-
itory, achieved in TortoiseHG with the synchronization action. First, select TortoiseHG → Synchronize from the
context menu for your workspace folder.

This will bring up the TortoiseHG Sync dialog. In this dialog, you will see that by default you will be synchronizing
with the workspace on the teaching repository from which you originally created this clone. This is usually what
you want to do, but it is possible to synchronize with other Mercurial repositories. In this case, we want to push the
changes we have made to the model repository, so choose the corresponding action from the toolbar (highlighted
below).

Once you choose the push action, you will be asked to confirm that you want to push to your remote repository
and then asked for your username and password (these are the credentials you created when registering for an
account in the model repository). You will then see a listing of the transaction as your changes are pushed to the
repository and a message stating the push has completed.

Command line equivalent

hg push

If you now return to browsing your workspace in your web browser, and refresh the page, you will see that your
workspace now has some content - n62.cellml - and if you view the workspace history, you will see the log
messages that you entered when committing your changes above.

10 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

1.1. Tutorial outline 11

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Now might be a good time to think about sharing your workspace with your neighbours. You might also want to
have a look at creating an exposure for your workspace. To learn how to create exposures, please refer to Creating
CellML exposures.

Making use of annotations

Recent additions to PMR2 have focussed on working with semantic metadata. In this part of the tutorial we
will demonstrate how to take the annotated Noble (1962) model from the previous tutorial and index it in the
repository’s semantic knowledgebase for later retrival.

In the previous tutorial, you annotated your copy of the Noble (1962) model and pushed it up to the teaching
instance repository. If you now visit your workspace URL and navigate to the RDF Indexing tab (1), you will see
that the n62.cellml is the only resource avaiable to be indexed (2).

Moving the n62.cellml file over to the box on the right indicates that it should be indexed (3) and selecting
the Apply Changes and Export to RDF Store button (4) will apply the change and index the RDF obtained from
the CellML document.

As long as everything is successful, you’ll end up with a page similar to that shown below, and future revisions of
the n62.cellml file will automatically be indexed in the RDF store.

Now that your model is indexed, lets try to find it. You can navigate to the Ontology based search engine from the
front page of the teaching instance.

12 Chapter 1. VPH 2014 - ABI Software Tutorial

http://teaching.physiomeproject.org
http://teaching.physiomeproject.org
http://teaching.physiomeproject.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

1.1. Tutorial outline 13

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

In the search text field, you can begin typing the label of one of the terms you added to your copy of the Noble
(1962) model. In this example, we used the term voltage-gated sodium channel complex. As you
type the auto-complete will kick in and you’ll start to see suggested terms. As you refine your query the list will
decrease and you will hopefully see one you remember entering.

Once you choose the desired term, you can click the Search button to exectute the search. Assuming you selected
an ontology term that you used (or which someone else has used in another workspace) you should see your copy
of the Noble (1962) model in the search results.

Note: Because your workspace is still private, only you will see it in the search results even if you use the same
annotation terms as others. Once a workspace is published, the associated annotations will become visible and
searchable by all. Similarly, if you share your workspace with another user they will then see your model show
up in their search results for the appropriate ontology terms.

In future, OpenCOR will make use of PMR2 webservices to provide a similar interface as the repository web
interface directly in the application. This will allow users to find and reuse existing models all in one place.

Reproducing model behaviour in OpenCOR

In this tutorial, we will be demonstrating how to reproduce the results from a CellML model as they were originally
published. Because the repository makes use of Mercurial, even if a workspace has continued being developed

14 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

after a particular revision is published, we are able to step back through the workspace history to reproduce those
original published results.

Following on from the previous tutorial, we make use of the Noble (1962) cardiac cellular electrophysiology
model. In this tutorial, we will use the version of this model published in the repository and available here:
https://models.physiomeproject.org/e/174. If you navigate from that exposure to the workspace you can check the
history as shown below.

As you can see highlighted in the Exposure column of the history above, there are two exposures for this
workspace. For the purposes of this tutorial, we will assume that the earlier exposure corresponds to a study
that has been published in a scientific journal. The later exposure is the result of further work on this model
following the publication of the journal article. The later exposure illustrates the difference between these two
versions of the model. In this tutorial, we aim to reproduce the results as shown in the published journal article -
corresponding to the earlier exposure.

Important: It is essential to use a Mercurial client to obtain models from the repository for editing. The
Mercurial client is not only able to keep track of all the changes you make (allowing you to back-track if you
make any errors), but using a Mercurial client is the only way to add any changes you have made back into the
repository.

Cloning an existing workspace

The first step is to clone the workspace containing the model we want to work with. The steps to clone a workspace
were demonstrated in the previous tutorial. In summary:

1. Copy the source URI for Mercurial clone/push/pull (i.e., https://models.physiomeproject.
org/w/andre/embc13-n62);

2. Clone the repository (TortoiseHG → Clone or hg clone [uri]) to a folder on your machine.

Check the model

Now that we have the model, we want to ensure that we are able to produce the current results that it should
produce. Load the n62.cellml file in the newly cloned folder into OpenCOR and run a simulation for 5000 ms
and plot the membrane potential, V. This should result in a similar graph to that shown in the upper figure of the
exposure page, reproduced here for convenience.

Notice that in the 5000 ms simulation there are five action potentials.

1.1. Tutorial outline 15

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/
https://models.physiomeproject.org/e/174
https://models.physiomeproject.org/w/andre/embc13-n62/@@shortlog
https://models.physiomeproject.org/e/173
https://models.physiomeproject.org/e/174

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Revert to an earlier version of the model

Now that we are happy the current version of the model reproduces the results that it should, we want to go back
to the version of the model that was published in a journal article. This is commonly required because the new
work you might want to do with the model will be based on the published model, not its latest version which may
have deviated from the validated model which was published.

Using Mercurial, there are several methods by which you can jump around the history of a workspace. The
particular method that works best depends a lot on what you want to do with the workspace once you change back
to a revision that is not the most recent. Searching the internet for information on the Mercurial (hg) commands:
revert, update, and branch; is probably a good place to start working out which is best for your situation.
In this case, we have a fairly simple requirement to go back to the revision prior to the current one so that we can
reproduce some simulation results. If we were actually going to do further development in this workspace, we
would need a more elaborate solution than that described below.

Here, we need to update our local clone of the workspace to a state matching the published journal article. In
order to do this, we need to find the appropriate revision identifier to use with our Mercurial client. We can find
the revision identifier by navigating to the workspace history tab in the model and choosing the [files] link for the
revision corresponding to the earlier exposure, shown below.

16 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

From the files page, you will see the required revision identifier as highlighted in the image below.

You should copy this identifier to the clipboard ready for use in the next step. In your local clone of the workspace,
select TortoiseHG → Update... from the context menu. This will bring up the Update dialog.

In this dialog, you should paste the revision identifier copied above into the Update to: field (1) and then click the
Update button (2).

Command line equivalent

hg update -r 9cad4365b0b8

You will now see in your local clone that the files have reverted back to that previous version. Loading this version
of n62.cellml into OpenCOR and simulating for 5000 ms should result in the figure matching that presented
in the earlier exposure page and reproduced here for convenience.

1.1. Tutorial outline 17

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

18 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Note in particular that there should now be the same six action potentials that were present in the published version
of the model. In the preceeding tutorials, you have learnt how to create a new piece of work from scratch using
the respository and how to reproduce a “published” result. In this tutorial, we will demonstrate how to take an
exisiting piece of work, stored in a public workspace, and develop it further to address a new goal.

Extending an existing CellML model

In this part of the tutorial, we will once again be making use of the Noble (1962) cardiac cellular electrophysiology
model. We will be taking the model and making changes to alter its behaviour. For this, we will be using the same
version of the model published in the teaching instance of the repository: http://teaching.physiomeproject.org/e/
173, but the process described below will also work in the main repository site.

Forking an existing workspace

Important: It is essential to use a Mercurial client to obtain models from the repository for editing. The
Mercurial client is not only able to keep track of all the changes you make (allowing you to back-track if you
make any errors), but using a Mercurial client is the only way to add any changes you have made back into the
repository.

For this tutorial, we will fork an existing workspace. This creates a new workspace owned by you, containing a
copy of all the files in the workspace you forked including their complete history. This is equivalent to cloning
the workspace, creating a new workspace for yourself, and then pushing the contents of the cloned workspace into
your new workspace.

Forking a workspace can be done using the repository web interface. The first step is to find the workspace you
wish to fork. As before, we will use the workspace from the exposure referenced above, which can be found at:
http://teaching.physiomeproject.org/w/andre/embc13-n62.

Once you are logged in, click on the Fork option in the toolbar, as shown below (1).

You will be asked to confirm the fork action by clicking the Fork button (2). You will then be shown the page for
your forked workspace.

Cloning your forked workspace

In order to make changes to your workspace, you have to clone it to your own computer. To do this, follow the
procedure as described in the earlier tutorial.

1.1. Tutorial outline 19

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/
http://teaching.physiomeproject.org/e/173
http://teaching.physiomeproject.org/e/173
http://teaching.physiomeproject.org/w/andre/embc13-n62

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Quietening the self excitation

The version of the Noble 1962 model you have just forked and cloned is a model of a Purkinje fibre cell. These
cells are capable of acting as pacemaker cells, although usually entrained by the sinoatrial node of the heart. The
Noble model reproduces this behavior but is also able to simulate a non-pacing version of the cell model. This is
accomplished by decreasing the potassium current which gives rise to the gradual depolarization of the membrane
potential seen in the figures from OpenCOR simulations for the model in the previous tutorials. Once the cell is
in a quiesent state, we are able to then apply an electrical stimulus to impose our own pacing regime.

If you load the n62.cellml file from the workspace you have just cloned into OpenCOR, set the duration of
the simulation to 5000 ms (1), and plot the membrane potential V, you will be able to see the effect of altering
the value of the variable g_K_add in the parameters component. As you increase this value you should see
the resting potential decrease and the abolution of the self-exciting mechanism. A value of 0.001 mS_per_mmsq
keeps the resting potential in the physiological range and makes the cell quiesent (2).

Changes to the parameter value in the simulation view are not currently saved in the model, so to save the change
you will need to switch to an editing view (1, 2), find the g_K_add parameter (3), and set the initial_value
attribute directly (4), as shown below.

Now would be a good time to commit your changes to your clone of the workspace

Adding an electrical stimulation protocol

Now that we have a quiesent version of the Noble (1962) model, we are able to consider adding our own electrical
stimulation protocol. In the Raw CellML view, you will see a component with the name stimulus_protocol
as shown below.

As you can see in this snippet of the XML source, there is a stimulus current variable, IStim, which is given a
value of 0.0 uA_per_mm2. In this extension to the model we will replace this simple assignment of no stimulus
current with a definition of a periodic applied stimulus. The code example below shows one way to encode such
a periodic stimulus current in CellML.

<component cmeta:id="stimulus_protocol" name="stimulus_protocol">
<variable name="IStim" public_interface="out" units="uA_per_mmsq"/>
<variable name="time" public_interface="in" units="ms"/>
<variable name="stimPeriod" initial_value="750" units="ms"/>
<variable name="stimDuration" initial_value="1" units="ms"/>
<variable name="stimCurrent" initial_value="400" units="uA_per_mmcu"/>

20 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

1.1. Tutorial outline 21

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

<variable name="Am" initial_value="200" units="per_mm"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply id="stimulus_calculation"><eq />
<ci>IStim</ci>
<piecewise>

<piece>
<apply><divide/>

<ci>stimCurrent</ci>
<ci>Am</ci>

</apply>
<apply><lt/>

<apply><rem/>
<ci>time</ci>
<ci>stimPeriod</ci>

</apply>
<ci>stimDuration</ci>

</apply>
</piece>
<otherwise>

<cn cellml:units="uA_per_mmsq">0.0</cn>
</otherwise>

</piecewise>
</apply>

</math>
</component>

In the above example, we have introduced some new variables to control the frequency, duration, and magnitude
of the applied stimulus current. If you replace the stimululs_protocol component in the n62.cellml
model with the one above, you are able to view a rendering of the mathematics, as below.

Switching back to the Simulation view, you are able to have a play with those variables to ensure they are behaving
as expected. Note: you may need to set the Maximum step for CVODE to 0.1 or change to the Forward Euler
integrator in OpenCOR to ensure that your specified stimulus in correctly detected by the numerical integration
scheme.

Now would be a good time to commit your changes to your clone of the workspace and push them back to the
model repository. You might also want to think about sharing your workspace with your neighbors or to have

22 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

a look at creating an exposure for your workspace. To learn how to create exposures, please refer to Creating
CellML exposures.

MAP Client

This tutorial is designed to show you the capabilites of MAP Client and how it can make use of the Auckland
Physiome Repository through it’s webservices. The focus of work on the MAP Client to date has been work for
the musculoskeletal system which is not appropriate for this tutorial, the tutorials here are exemplary tutorials
designed to exhibit the use and capabilites of MAP Client.

Contents:

Setting Up Pre-requisite Software

MAP Client is dependent on a number of software packages that must be installed before the application can be
run. Some of the plugins that MAP Client makes use of have their own dependencies that must also be installed
before the plugins can be used. Here we outline the required dependencies and some notes on installation.

Dependencies

Much of what is covered here is relevant for windows users only as OS X and GNU/Linux based operating systems
already have the required dependencies for MAP Client. Also GNU/Linux machines have package managers
which facilitate the installation of missing dependencies. It is left as an exercise for the user to install dependencies
for operating systems that make use of a package manager.

List of Dependencies

• Python - version 2.7.X is preferred, but version 3.X.Y should also work.

• PySide - Python bindings for the Qt libraries.

• requests_oauthlib - Python package for XXXXXXXX

1.1. Tutorial outline 23

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• rdflib - Python package for working with RDF.

Other Dependencies

As MAP Client is focused on scientific processes the Numpy Python package is quite often used. It is not required
by MAP Client itself but it is used by a number of plugins that essentially make it a requirement.

• Numpy - Python package for numerical algorithms

• Zinc - OpenCMISS-Zinc visualisation library

• PyZinc - Python bindings for the OpenCMISS-Zinc library

Automatic segmentation of a three-dimensional image stack

The purpose of this first task is to demonstrate some of the capabilities of the MAP Client workflow tool.

Import Workflow from PMR

Start the ‘mapclient’ application. Use the ‘File’ menu to select the import action. The dialog that appears connects
to webservices on PMR that will enable us to search for MAP Client workflows.

Fig. 1.4: Figure 1: Import Dialog [1] Workspace url, [2] Search text, [3] Search button, [4] Search results, [5]
Destination directory, [6] Directory chooser button, [7] Confirm or cancel import.

24 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

We will leave the ‘Search text’ [2] blank and click the search button to search for all Workflows available on PMR.
Once the search results are displayed in [4] select the entry with the title ‘Workflow: BloodVesselAutoSegmenta-
tion’. This will put the Workspace url in the ‘Workspace url’ [1] box. Next use the ‘Directory chooser button’ [7]
to choose a local directory for importing the ‘Workflow’ to. The chosen directory will be put in the ‘Destination
directory’ [5]. When the ‘Workflow url’ and ‘Directory destination’ are correct press the ‘Ok’ button to complete
the import.

Blood Vessel Automatic Segmentation Workflow

The Blood Vessel Automatic Segmentation Workflow consists of three workflow steps as shown in Figure 2.

Fig. 1.5: Figure 2: Blood Vessel Automatic Segmentation Workflow.

1. An image source step.

This step is designed to pass the location of an image or images through to another step. This step also has
the functionality to download content from PMR.

2. An automatic segmentation step.

This step takes in the location of the image set and reads in the images using OpenCMISS-Zinc. The images
are analyzed, segmented and then discretized into a point cloud. The output from this step is a list of point
locations in the image space.

3. A point cloud serialization step.

This step serializes a list of point locations to disk.

Before the workflow can be executed each step in the workflow must be configured and the workflow saved. A
gear icon in the bottom right hand corner of the step icon on the workflow canvas indicates whether the step is
configured or not. A red icon represents an unconfigured step whilst a green icon represents a configured step.
Clicking on the gear icon will display a configuration dialog for the step (if the step requires manual configuration).
When a step has been configured correctly the green icon will be displayed. For our workflow we need to configure
the image source step and the point cloud serialization step. A detailed discussion on configuring all the steps in
this workflow is given below.

Workflow Configuration

This section describes how each step should be configured.

Image Source Step

The image source step requires a unique identifier for the step to be set. It also requires either a location on the
local disk where the image data is located or a PMR workspace url from which the image data may be downloaded.

This step configuration makes use of the PMR search widget which gives us the ability to search available
workspaces on PMR. We will make use of this functionality in this example. In the image source step config-
uration dialog seen in Figure 3 we can see that there is a place to set a unique identifier for the step and also two

1.1. Tutorial outline 25

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

tabs, one tab is for setting the image dataset location on the local disk and the other tab is for searching PMR
workspaces for image data. We will leave the local disk edit box on the local file system tab empty and allow the
configuration to set the default location.

Fig. 1.6: Figure 3: Image source step configuration dialog.

Set the identifer edit box to bv_images and select the Physiome Model Repository tab so that we can search PMR
for our images. On this tab we see We are going to conduct an ontological term search for our images, we are
looking for some images that show an anyeurism in the anterior communicating artery. To do this we can start
entering the text anterior communicating artery into the search term edit box [3], when we pause in our typing
the dialog will query the PMR OWL terms for suitable matches. We will see results similar to what is shown in
Figure 5, we can click on the matching term in this list and the correct reference will be added to the search term
edit box [3] for us.

Fig. 1.7: Figure 4: PMR search tab, [1] Workspace url, [2] Search type combobox, [3] Search term, [4] Search
button, [5] Search results.

Fig. 1.8: Figure 5: PMR OWL terms.

With the correct term in place we can click the search button to return matching results from PMR. We will get
back a single result Blood Vessel in MR Images. When we select this result in the search results list [5] the url for
the workspace will be loaded into the workspace url edit box [1]. We should now have the dialog looking similar
to Figure 6.

This completes the configuration of the image source step. When we click Ok in the dialog the images will be
downloaded to the default directory on our local disk.

We can also use the combobox at the bottom of the dialog (Figure 3) to set the image type however this is only
necessary if the image type cannot be determined through the filename extension. In our case we can leave this as
it is.

26 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 1.9: Figure 6: Completed Physiome Model Repository search tab.

Alternatively, if PMR is unavailable copy the images from a usb memory stick into a directory on your computer,
set the location on the local file system tab to this directory.

Automatic Segmentation Step

The automatic segmentation step does not require any configuration. Whilst this makes the configuration stage
unnecessary it limits the usefulness or this step since it is configured to work for a only one set of images. An
obvious enhancment to this step would be to expose the configurable properties of the segmentation to the user.

Point Cloud Serialization Step

The point cloud serialization step only requires the identifier for the step to be specified. The identifier will also
be used to create an output directory of the same name and the serialization of the input data will be placed into a
file under this directory. Set the identifier to ‘bv_point_cloud’ (as in Figure 7).

Fig. 1.10: Figure 7: Point cloud configuration dialog.

Execute the Workflow

Once all the workflow steps have been correctly configured save the workspace. We can do this through the File
menu and selecting the save entry or by using the keyboard shortcut ‘ctrl+s’. Because we have a workflow based
on a version control system the commit dialog will appear so that we can keep a record of the changes. Figure 8
shows this dialog, here we want to choose the skip commit option to save our workflow. In this example we are
not going to commit our changes back to the workspace on PMR.

Fig. 1.11: Figure 8: PMR workspace commit dialog.

At this point we are ready to begin executing the workflow. To do this we click the execute button in the lower
right hand corner of the window.

1.1. Tutorial outline 27

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Execution

Once the execute button has been clicked the workflow will start to traverse the underlying directed graph, in
our case starting from the image source step. In this simple workflow the only interactive step is the automatic
segmentation step which displays a visualisation of the segmentation.

The automatic segmentation step shows a 3D interactive scene, where we can use the mouse to change the view
of the scene. A brief description of some of the possible mouse actions is given here, the left-mouse button will
rotate the scene, the right-mouse button will zoom the scene and the middle-mouse button will translate the scene.
We also have some controls to show and hide the graphical elements in the scene and a slider that will change the
z-component of the image plane. Figure 9 shows the segmentation step interactive scene.

Fig. 1.12: Figure 9: Autosegmentation step screen.

To continue with the execution of the workflow click the done button in the lower right hand corner. When the
workflow has finished executing all the steps in the workflow the workflow editor screen will be shown.

Check Output

We can now examine the output of the workflow using any text editor. The output is stored in a file called
point_cloud.txt in a directory bv_point_cloud which can be found under the workflow directory.

Manually digitising an image stack

The purpose of this task is to demonstrate the coolest step that currently exists for the MAP Client and to highlight
the reusable nature of the plugins/steps. Be sure to reference the github collection of steps that is being populated
and the idea that people should contribute their steps even if they think they are specific to their own work.

1. Configure the image stack to load

2. Bring up the manual digitisation editor

• Probably need to provide enough detail that people will be able to use it, possibly link to the relevant
documentation in the MAP Client docs?

3. Digitise some points

4. Explain how to load up some points that have already been defined (like wow!)

5. Digitise some more points

6. Handover to the output to text file step.

7. and the visualise in Zinc step

28 Chapter 1. VPH 2014 - ABI Software Tutorial

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

8. Explain how those two output steps are identical to those from the previous task and talk about step-reuse,
sharing knowledge, reproducibility, etc.

Preliminary CellML simulation step

What is the state of the CellML-based demo from the CellML workshop? can that be revived and added in here?

Creating your own step

Is it step or plugin?

The purpose of this step is to demonstrate how to define your own step. This will probably be a link to the
appropriate section in the MAP Client docs. Using a nice simple process enables the user to intuitively know what
output to expect for a given input so it makes it easy for them to play with things, predict the outcome, and check
the actual outcome matches their prediction.

As well as linking to the docs for the standard how to create a step, be sure to encourage them to look into the
source for the steps used in the tasks above - which are all available somewhere...

1.1. Tutorial outline 29

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

30 Chapter 1. VPH 2014 - ABI Software Tutorial

CHAPTER 2

Auckland Physiome Repository

The documentation found here is mainly aimed towards providing information to users of the Auckland Physiome
Repository. This includes users interested in obtaining and running models from the respository, and those who
wish to add models to the repository.

If you wish to deploy an instance of the repository software, PMR2, please see the buildout repository on GitHub.

Auckland Physiome Repository - an introduction

The Auckland Physiome Repository, includes the CellML and FieldML repositories, and is powered by software
called PMR2. PMR2 relies on the distributed version control system Mercurial (Hg), which allows the repository
to maintain a complete history of all changes made to every file contained within repository workspaces. In order
to use the Physiome Model Repository, you will need to obtain a Mercurial client for your operating system,
and become familiar with the basic functions of Mercurial. There are many excellent resources available on
the internet, such as Mercurial, the definitive guide. Mercurial clients may be downloaded from the Mercurial
website, which also provides documentation on Mercurial usage. A graphical alternative to a command-line client
is available for Windows, called TortoiseHg. This provides a Windows explorer integrated system for working
with Mercurial repositories.

Downloading and viewing models from the Auckland Physiome
Repository

There are several ways of obtaining and using models from the Auckland Physiome Repository, and which you
choose will depend on the way you intend to use the models. If you are simply interested in running a particular
model and viewing the output, you can use links found on model exposure pages to get hold of the model files.
There links available for a large number of models that will load the model directly into the OpenCell application,
allowing you to explore simulation results with the help of a model diagram.

If you intend to use the model for further work, for example saving changes to the model or creating a new model
based on an existing model or parts of an existing model, you should use Mercurial to obtain the files. In this
way you also obtain the complete revision history of the files, and can add to this history as you make your own
changes.

31

https://models.physiomeproject.org
https://models.physiomeproject.org
https://github.com/PMR2/pmr2.buildout
http://mercurial.selenic.com/
http://hgbook.red-bean.com/read/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Searching the repository

The Auckland Physiome Repository has a basic search function that can be accessed by typing search terms into
the box at the top right hand side of the page. You can use keywords such as cardiac or insulin, author
names, or any other terms relevant to the models you want to find.

Fig. 2.1: The index page of the model repository provides two methods for finding models. There is a box
for entering search terms, or you can click on categories based on model keywords to see all models in those
categories.

If your search is yielding too many results, you may either try to narrow it down by choosing more or different
keywords (eg. goldbeter 1991 instead of just goldbeter), or you can click the Advanced Search link just
under the search box on the results page. This will take you to a search page where you can select specific item
types (eg. exposures or workspaces).

Once you have found the model you are interested in, there are several ways you can view or download it.

32 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.2: In this search only exposure related items are to be shown in the results.

2.2. Downloading and viewing models from the Auckland Physiome Repository 33

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Viewing models via the respository web interface

The most common use of the Auckland Physiome Repository web interface is probably to view information about
models found on exposure pages, and to then download the models from these pages for simulation in a CellML
supporting application.

Below is an example of a CellML exposure page. It contains documentation about the model(s), a diagram of the
what the model(s) represent, and a navigation pane that allows the user to select between available versions of the
model. Many models only have one version, but in this case there are two variants.

Fig. 2.3: An example of a CellML exposure page.

If you click on one of the model variant navigation links, you will be taken to a sub-page of the exposure which
will allow you to view the actual CellML model in a number of ways.

On this page there are a number of options under a Views available panel at the right hand side.

• Documentation - displays the model documentation, already visible in the main area of the exposure page.

34 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.4: An example of a CellML exposure sub-page.

2.2. Downloading and viewing models from the Auckland Physiome Repository 35

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• Model Metadata - displays information such as the citation information, model authorship details, and
keywords.

• Model Curation - displays the curation stars for the model, also visible at the top right of the page. Future
additions to the curation system mean that there will be additional information to be displayed on this page.

• Mathematics - displays all the equations in the model in graphical form.

• Generated code - shows a page where you can view the model in a number of different languages; C,
C_IDA, Fortran 77, MATLAB, and Python. You can copy the generated code directly from this page to
paste into your code editor.

• Cite this model - this page provides generic information about how to cite models in the repository.

• Source View - provides a raw view of the CellML (XML) model code.

• Simulate using OpenCell - this link will download the model and open it with OpenCell if you have the
software installed. If the model has a session file, this will include an interactive diagram which can be
clicked on to display traces of the simulation results.

The OpenCell session that is loaded when clicking on the Simulate using OpenCell link looks something like this:

Fig. 2.5: An OpenCell session. Objects such as membrane channels in the diagram can be clicked - this will toggle
the graph traces displaying the values for those objects.

Downloading models via Mercurial

All data in the Auckland Physiome Repository are stored in workspaces and each workspace is a Mercurial
repository. The most comprehensive method of downloading content from Auckland Physiome Repository is to

36 Chapter 2. Auckland Physiome Repository

http://www.cellml.org/tools/opencell/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

clone the workspace containing the desired data. In this manner you will have a local copy of the entire history
of that data, including all provenance data, and the ability to step back through the history of the workspace to
a state that may not be available via the download links in the exposure pages discussed above. If you would
like to modify the contents of workspace, making use of Mercurial will ensure accurate provenance records are
maintained as well as all the other benefits of using a version control system.

As software tools like OpenCOR and MAP Client evolve, they will be able to hide a lot of the Mercurial details
and present the user with a user interface suitable for their specific application areas. Directly using Mercurial is,
however, currently the most powerful way to leverage the full capabilities of Auckland Physiome Repository.

If you are using the command line Mercurial client, you can easily clone the underlying repository for an exposure
simply by selecting the text box inside the Collaboration portlet and paste that command into a terminal, or right
click on the name of the workspace under the Source portlet and copy that URL and then paste that into your
Mercurial client.

Detailed instructions for working with Mercurial can be found in the CellML repository tutorial.

Working with workspaces

Section author: David Nickerson

All models in the Auckland Physiome Repository exist in workspaces, which are Mercurial repositories that can
be used to store any kind of file. Mercurial is a distributed version control system (DVCS).

In order to create your own workspaces, you will first need to create a repository account by registering at mod-
els.physiomeproject.org. Near the top right of the repository page there will be links labelled Log in and Register.
Click on the register link, and follow the instructions.

Workspaces in the Auckland Physiome Repository are permanent once they are created. There is a teaching
instance of the repository which may be used for experimenting with features of the software without worrying
about creating permanent workspaces that might have errors in them. Users accounts and data from the Auckland
Physiome Repository will be copied to the teaching instance periodically, overwriting all data there in the process,
but users may register for an account just on the teaching instance if they prefer. Such accounts will need to be
recreated each time the teaching instance is overwritten.

Note: The teaching instance of the repository is a mirror of the main repository site found at http://models.
physiomeproject.org/, running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not permanent, and will be overwritten with
the contents of the main repository whenever the teaching instance is upgraded to a new release of PMR2. For this
reason, you can feel free to experiment and make mistakes when pushing to the teaching instance. Please subscribe
to the cellml-discussion mailing list to receive notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for instructions on how to migrate any content from the
teaching instance to the main (permanent) Auckland Physiome Repository.

Creating a new workspace

Once a user is logged into Auckland Physiome Repository, they will be presented with a My Workspaces link in
the top toolbar, as shown below:

The first paragraph includes a link to your dashboard to add a new workspace, shown below:

Currently Mercurial is the only avialable option for the storage method for a new workspace, but this may be
expanded to include other storage methods in future. A workspace should be given a meaningful title and a brief
description to help locate the workspace using the repository search. Both these fields can be edited later, so don’t
worry if you don’t get it perfect the first time.

Clicking the Add button with then create the workspace, which will initially be empty, as shown below:

2.3. Working with workspaces 37

http://abibook2.readthedocs.org/en/latest/OpenCOR/
http://abibook2.readthedocs.org/en/latest/MAP/
https://models.physiomeproject.org
https://models.physiomeproject.org
http://teaching.physiomeproject.org/
http://teaching.physiomeproject.org/
http://teaching.physiomeproject.org/
http://teaching.physiomeproject.org/
http://models.physiomeproject.org/
http://models.physiomeproject.org/
http://lists.cellml.org/mailman/listinfo

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

38 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

2.3. Working with workspaces 39

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

40 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

In the figure above, the URI of the newly created workspace has been highlighted. This is the URI that will be
used when operating on the workspace using Mercurial.

Working with collaborators

The repository makes use of Mercurial to manage individual workspaces. Mercurial is a Distributed Version
Control System (DVCS), and as such encourages collaborative development of your model, dataset, results, etc.
Using Mercurial, each member of the development team is able to have their own clone of the workspace which can
be kept synchronized with the other members of the development team, while ensuring that each team member’s
contributions are accurately recorded in the workspace history.

Once a workspace has been published, any registered users (or members) of the repository is able to access
and clone the workspace, including team members and the anonymous public. Only the owner and those with
privileges granted by the owner are able to make changes to the workspace, including pushing changes into the
Mercurial repository. Private workspaces, however, can only be viewed by its owner and those with viewing
privileges granted by its owner.

Auckland Physiome Repository provides access controls to manage the ability of its members and anonymous
users to interact with workspaces. The access control is managed via the Sharing tab for a given workspace, as
shown below.

By default, you will initially see that all logged-in user has the Can add permission. That is the inherited permis-
sion from the global workspace container, and does not imply that they can view your work as that is determined
by the Can view permission. This also does not mean that they can add data to your workspace. This permission
setting is applied to the default workspace container so that you and all other users of the system have the ability
to create new workspaces.

PMR2 has the option to provide individual containers per user for their private workspaces, but this option is now
disabled in the Auckland Physiome Repository.

You can disable the inherited higher level permissions from your workspace by unchecking the Inherit permis-
sions from higher levels checkbox, if you wish, but the administrators of the repository can access your workspace
regardless if you wish for them to aid you with your workspace. Using the Sharing tab you are able to search for
other members, such as the names of people in your development team. These members would then appear in the
list of members and you are able to set their access as required.

Using the Sharing controls there are currently four possible permissions that can be controlled. The Can add and
Can edit permissions relate to the object that represents the workspace in the website database and are generally
left in the default state. When selected for a given member, the Can view permission allows that member to view
the workspace on the website, even if the workspace is private. Similarly, when the Can hg push permission is
enabled the selected member is able to push into the workspace - this is the most important permission as enabling
this allows members to add, modify, and delete the actual content of the workspace. One benefit of using Mercurial
means that even if one of the privileged members accidentally modifies the workspace in a detrimental manner, it
is possible to revert the workspace back to the correct state.

When working in a collaborative team you would generally enable the Can hg push and Can view permissions
for all team members and only enable the Can add and Can edit permissions for the team members responsible
for the workspace presentation in the website.

Alternatively, if you wish to make your work available for searching by any users, including the ones who do not
have an account with the repository, you may do so by changing the workflow state from “private” to “submit for
publication”. This will put your workspace into the reviewer queue and they will turn it into the “published” state.

Uploading files to your workspace

The basic process for adding content to a workspace consists of the following steps:

1. Clone the workspace to your local machine.

2. Add files to cloned workspace.

2.3. Working with workspaces 41

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

42 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

2.3. Working with workspaces 43

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

3. Commit the files using a Mercurial client.

4. Push the workspace back to the repository.

An example demonstrating these steps can be found in in this tutorial step: Populate with content, or continue on
to the next section of this guide.

Tutorial on using CellML with Auckland Physiome Repository

Section author: David Nickerson, Randall Britten, Dougal Cowan

About this tutorial

The Auckland Physiome Repository provides extensive support for CellML model and related files. Previously it
was called the CellML Model Repository, this has since been merged completely along with the FieldML Model
Repository into the unified repository. The underlying software is PMR2, which in turn relies on the distributed
version control system Mercurial (Hg), which allows the repository to maintain a complete history of all changes
made to every file it contains. This tutorial demonstrates how to work with the repository using TortoiseHg, which
provides a Windows explorer integrated system for working with Mercurial repositories.

Brief mention of the equivalent command line versions of the
TortoiseHg actions will also be mentioned, so that these ideas can
also be used without a graphical client, and on Linux and similar
systems. These will be denoted by boxes like this.

This tutorial requires you to have:

• A Mercurial client such as TortoiseHg or Mercurial installed

• The OpenCell CellML modelling environment

• A text editor such as Notepad++ or gedit

Basic concepts

The Auckland Physiome Repository use a certain amount of jargon - some is specific to the repository software,
and some is related to distributed version control systems (DVCSs). Below are basic explanations of some of these
terms as they apply to the repository.

Workspace

A container (much like a folder or directory on your computer) to hold the files that make up a model,
as well as any other files such as documentation or metadata, etc. In practical terms, each workspace
is a Mercurial repository.

Exposure

An exposure is a publicly viewable presentation of a particular revision of a model. An exposure
can present one or many files from your workspace, along with documentation and other information
about your model.

The Mercurial DVCS has a range of terms that are useful to know, and definitions of these terms can be found in
the Mercurial glossary: http://mercurial.selenic.com/wiki/Glossary.

Working with the repository web interface

This part of the tutorial will teach you how to find models in the Auckland Physiome Repository https://models.
physiomeproject.org, how to view a range of information about those models, and how to download models. The
first page in the repository consists of basic navigation, a link to the main model listing, a search box at the top
right, and a list of model category links as shown below.

44 Chapter 2. Auckland Physiome Repository

http://abibook2.readthedocs.org/en/latest/tutorials/embc13/scenario1/opencor/#embc13-opencor-addingcontent
http://tortoisehg.bitbucket.org/
http://mercurial.selenic.com/
http://www.cellml.org/tools/opencell
http://notepad-plus-plus.org/
http://projects.gnome.org/gedit/
http://mercurial.selenic.com/wiki/Glossary
https://models.physiomeproject.org
https://models.physiomeproject.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.6: The front page of the Auckland Physiome Repository.

2.4. Tutorial on using CellML with Auckland Physiome Repository 45

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Model listings

Clicking on the main model listing or any of the category listings will take you to a page displaying a list of
exposed models in that category. Click on electrophysiology for example, and a list of over 100 exposed models
in that category will be displayed, as shown here.

Fig. 2.7: A list of models in the electrophysiology category.

Clicking on an item in the list will take you to the exposure page for that model.

Searching the repository

You can search for the model that you wish to work on by entering a search term in the box at the top right of
the page. Many of the models in the repository are named by the first author and publication date of the paper,
so a good search query might be something like goldbeter 1991. A list of the results of your search will probably

46 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

contain both workspaces and exposures - you will need to click on the workspace of the model you wish to work
on. Workspaces can be identified by where they are located, as they will be located inside Workspaces. In the
following screenshot, the first two results are workspaces, and the remainder are exposures. Note that red links
are exposures that are marked as expired.

Fig. 2.8: A search results listing on the Auckland Physiome Repository.

Click on an exposure result to view information about the model and to get links for downloading or simulating
the model. Click on workspaces to see the contents of the model workspace and the revision history of the model.

Working with the repository using Mercurial

This part of the tutorial will teach you how to clone a workspace from the model repository using a Mercurial
client, create your own workspace, and then push the cloned workspace into your new workspace in the repository.

2.4. Tutorial on using CellML with Auckland Physiome Repository 47

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

We will be using a fork of an existing workspace, which provides you with a personal copy of a workspace that
you can edit and push changes to.

Registering an account and logging in

First, navigate to the teaching instance of the Auckland Physiome Repository at http://teaching.physiomeproject.
org/.

Note: The teaching instance of the repository is a mirror of the main repository site found at http://models.
physiomeproject.org/, running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not permanent, and will be overwritten with
the contents of the main repository whenever the teaching instance is upgraded to a new release of PMR2. For this
reason, you can feel free to experiment and make mistakes when pushing to the teaching instance. Please subscribe
to the cellml-discussion mailing list to receive notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for instructions on how to migrate any content from the
teaching instance to the main (permanent) Auckland Physiome Repository.

In order to make changes to models in the CellML repository, you must first register for an account. The Log
in and Register links can be found near the top right corner of the page. Your account will have the appropriate
access privileges so that you can push any changes you have made to a model back into the repository.

Click on the Register link near the top right, and fill in the registration form. Enter your username and desired
password. After completing the email validation step, you can now log in to the repository.

Note: This username and password are also the credentials you use to interact with the repository via Mercurial.

Once logged in to the repository, you will notice that there is a new link in the navigation bar, My Workspaces.
This is where all the workspaces you create later on will be listed. The Log in and Register links are also replaced
by your username and a Log out link.

Mercurial username configuration

Important: Username setup for Mercurial

Since you are about to make changes, your name needs to be recorded as part of the workspace revision history.
When commit your changes using Mercurial, it is initially “offline” and independent of the Auckland Physiome
Repository. This means that you have to set-up your username for the Mercurial client software, even though you
have registered a username on Auckland Physiome Repository.

You only need to do this once.

Steps for TortoiseHg:

• Right click on any file or folder in Windows Explorer, and select TortoiseHg → Global Settings.

• Select Commit and then enter your name followed by your e-mail address in “angle brackets” (i.e. less-than
“<” and greater-than “>”). Actually, you can enter anything you want here, but this is the accepted best
practice. Note that this information becomes visible publicly if the workspace that you push your changes
to is public.

Steps for command line:

• Edit the config text file:

– For per repository settings, the file in the repository: <repo>\.hg\hgrc

– System-wide settings for Linux: %USERPROFILE%\.hgrc

48 Chapter 2. Auckland Physiome Repository

http://teaching.physiomeproject.org
http://teaching.physiomeproject.org/
http://teaching.physiomeproject.org/
http://models.physiomeproject.org/
http://models.physiomeproject.org/
http://lists.cellml.org/mailman/listinfo

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

– System-wide settings for Windows: %USERPROFILE%\mercurial.ini

• Add the following entry:

[ui]
username = Firstname Lastname <firstname.lastname@example.net>

Forking an existing workspace

Important: It is essential to use a Mercurial client to obtain models from the repository for editing. The
Mercurial client is not only able to keep track of all the changes you make (allowing you to back-track if you
make any errors), but using a Mercurial client is the only way to add any changes you have made back into the
repository.

For this tutorial we will fork an existing workspace. This creates new workspace owned by you, containing a
copy of all the files in the workspace you forked including their complete history. This is equivalent to cloning
the workspace, creating a new workspace for yourself, and then pushing the contents of the cloned workspace into
your new workspace.

Forking a workspace can be done using the Physiome Model Repository web interface. The first step is to find
the workspace you wish to fork. We will use the Beeler, Reuter 1977 workspace which can be found at: http:
//teaching.physiomeproject.org/workspace/beeler_reuter_1977.

Now click on the fork option in the toolbar, as shown below.

You will be asked to confirm the fork action by clicking the Fork button. You will then be shown the page for your
forked workspace.

Cloning your forked workspace

In order to make changes to your workspace, you have to clone it to your own computer. In order to do this, copy
the URI for mercurial clone/pull/push as shown below:

In Windows explorer, find the folder where you want to create the clone of the workspace. Then right click to
bring up the context menu, and select TortoiseHG → Clone as shown below:

Paste the copied URL into the Source: area and then click the Clone button. This will create a folder called
beeler_reuter_1977_tut that contains all the files and history of your forked workspace. The folder will
be created inside the folder in which you instigated the clone command.

Command line equivalent

hg clone [URI]

You will need to enter your username and password to clone the workspace, as the fork will be set to private when
it is created.

The repository will be cloned within the current directory of your command line window.

Making changes to workspace contents

Your cloned workspace is now ready for you to edit the model file and make a commit each time you want to save
the changes you have made. As an example, open the model file in your text editor and remove the paragraph
which describes validation errors from the documentation section, as shown below:

Save the file. If you are using TortoiseHg, you will notice that the icon overlay has changed to a red exclamation
mark. This indicates that the file now has uncommitted changes.

2.4. Tutorial on using CellML with Auckland Physiome Repository 49

http://teaching.physiomeproject.org/workspace/beeler_reuter_1977
http://teaching.physiomeproject.org/workspace/beeler_reuter_1977

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

50 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.9: Copying the URI for cloning your workspace.

2.4. Tutorial on using CellML with Auckland Physiome Repository 51

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

52 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Committing changes

If you are using TortoiseHg, bring up the shell menu for the altered file and select TortoiseHg → Hg Commit.
A window will appear showing details of the changes you are about to commit, and prompting for a commit
message. Every time you commit changes, you should enter a useful commit message with information about
what changes have been made. In this instance, something like “Removed the paragraph about validation errors
from the documentation” is appropriate.

Click on the Commit button at the far left of the toolbar. The icon overlay for the file will now change to a green
tick, indicating that changes to the file have been committed.

Command line equivalent

hg commit -m "Removed the paragraph about validation errors from the documentation"

Pushing changes to the repository

Your cloned workspace on your local machine now has a small history of changes which you wish to push into
the repository.

Right click on your workspace folder in Windows explorer, and select TortoiseHg → Hg Synchronize from the
shell menu. This will bring up a window from which you can manage changes to the workspace in the repository.
Click on the Push button in the toolbar, and enter your username and password when prompted.

Command line equivalent

hg push

Now navigate to your workspace and click on the history toolbar button. This will show entries under the Most
recent changes, complete with the commit messages you entered for each commit, as shown below:

Create an exposure

As explained earlier, an exposure aims to bring a particular revision to the attention of users who are browsing and
searching the repository.

There are two ways of making an exposure - creating a new exposure from scratch, or “Rolling over” an exposure.
Rolling over is used when a workspace already has an existing exposure, and the updates to the workspace have
not fundamentally changed the structure of the workspace. This means that all the information used in making

2.4. Tutorial on using CellML with Auckland Physiome Repository 53

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

the previous exposure is still valid for making a new exposure of a more recent revision of the workspace. Strictly
speaking, an exposure can be rolled over to an older revision as well, but this is not the usual usage.

As you are working in a forked repository, you will need to create a new exposure from scratch. To learn how to
create exposures, please refer to Creating CellML exposures.

Migrating content to the main repository

As noted above, the teaching instance used in this tutorial is not suitable for permanent storage of your work. One
of the advantages of using a distributed version control system to manage workspaces is that it is straightforward to
move the entire workspace, including the full history and provenance record, from one location to another. PMR2
also provides a feature that exports exposures so that they can then be imported into another PMR2 instance.

For example: if you would like to move your work in your workspace on the teaching instance into a new
workspace on the Auckland Physiome Repository (or from one PMR2 instance to another), you should follow
these steps:

1. Ensure that you have pushed all your commits to the source instance;

2. Create the new workspace in the destination repository;

3. Navigate to the workspace created and choose the synchronize action from the workspace toolbar, as shown
below.

4. Fill in the URI of your workspace on the source instance (e.g., http://models.physiomeproject.org/w/andre/
cortassa-ECME-2006)

5. Click the Synchronize button.

In a similar manner, you are able to copy exposures you might have made on the teaching instance over to the
main repository, or from the main to the teaching instance if you want to test things out. Follow these steps to
migrate an exposure from one repository to another.

1. Navigate to the exposure you would like to migrate in the source repository.

2. Choose the wizard item from the toolbar as shown below.

3. In the destination repository, navigate to the desired revision of the (published) workspace and choose the
Create exposure action as described in the directions for creating an exposure from scratch

4. Rather than building a new exposure, choose the Exposure Import via URI tab in the exposure creation
wizard, as shown below.

54 Chapter 2. Auckland Physiome Repository

http://teaching.physiomeproject.org
http://models.physiomeproject.org/w/andre/cortassa-ECME-2006
http://models.physiomeproject.org/w/andre/cortassa-ECME-2006

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

2.4. Tutorial on using CellML with Auckland Physiome Repository 55

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

56 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

2.4. Tutorial on using CellML with Auckland Physiome Repository 57

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

58 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

5. Copy and paste the URI from the source exposure wizard, highlighted above, into the Exposure Export URI
field in the exposure creation wizard shown above.

6. Click the Add button. This will take you back to the standard exposure build page, but now with all the
fields pre-populated from the source exposure.

7. Navigate to the bottom of the page and click the Build button to actually build the exposure pages. You are
free to reconfigure the exposure if desired, some help is available for this if needed.

Working with semantic metadata

Section author: Tommy Yu

PMR2 release 8 and 9 brought in the support for semantic metadata, which allows users to add whatever metadata
and annotations they might have stored into the repository into the underlying metadata semantic engine, which
then allows them to be retrieved using search queries. In this section, we will go over how to use OpenCOR to
annotate a model, and how to add the metadata to the underlying metadata engine then query for the results.

Preparation

In this section, we assume that you have already run through the tutorial on using the repository for the basic
operations of the repository.

For the tutorial, we will use a fork of the the Hodgkin, Huxley, 1952 workspace. If you need a quick reminder on
how you might do this, please see this section of the tutorial.

Once you forked that workspace, you should now clone that workspace onto your system. If you need help on
this, please refer to this help on cloning a workspace.

Using OpenCOR for model annotation

Use OpenCOR to open your local clone of your model file, specifically the hodgkin_huxley_1952.cellml
file.

Select the sodium_channel component under the list of components, then click on the helpful link to remove
the existing metadata for that node.

In the dropdown menu of Qualifiers, select bio:isVersionOf

In the textbox Term, type in “sodium channel”, as the component is named so. Wait for the possible terms to be
retrieved and populated by OpenCOR.

Once that is done, hit the green ‘+’ button for the “sodium channel complex” (GO:0034706) to denote that the
component is a version of this term.

Now select the potassium_channel component, and repeat the processs to annotate this with the “potassium
channel complex” term.

Once you are done, save your changes, commit and push your work back into your private fork. Again, refer to
the tutorial linked in the preparation section if you need a primer.

Getting your workspace indexed by the repository

Now that your changes have been pused back, go back to the page for your fork of the model and select the “RDF
Indexing” tab.

Scroll down the left-handed list until you see the hodgkin_huxley_1952.cellml file, select it, then push
the button with the right arrow on it to add it onto the list of paths to be tracked, then select the “Apply Changes
and Export To RDF Store” button.

2.5. Working with semantic metadata 59

http://teaching.physiomeproject.org/workspace/hodgkin_huxley_1952

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

60 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

2.5. Working with semantic metadata 61

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

62 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Go back to the main page, select the “Ontology based search engine” link at the bottom, then enter the relevant
search term. As there are limited reasoning capabilities built into the current iteration of the search engine, you
may enter a term one level up above the terms we annotated the model with. For our example, please enter “cation
channel complex” into the search box, select the term ending with (GO_0034703). The search indicator will give
a green checkmark and now you may select the “Search” button. The search result will now list the workspace
and the file that contain this annotation.

Creating CellML exposures

Section author: Dougal Cowan

CellML models in the Auckland Physiome Repository are presented through exposures. An exposure is a view of
a particular revision of a workspace, and is quite flexible in terms of what it can present. A workspace may contain
one or more models, and any number of models may be presented in a single exposure. Exposures generally take

2.6. Creating CellML exposures 63

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

the form of some documentation about the model(s), a range of ways of looking at the model(s) or their metadata,
and links to download the model(s).

The example below shows the main exposure page for the Bondarenko et al. 2004 workspace. This workspace
contains two models, which can be viewed via the Navigation pane on the right hand side of the page.

Fig. 2.10: Example of an exposure page

If you click on one of the model navigation links, it will take you to the page for that particular model. Ex-
posures most often present a single model, although they can present any number of models, each with its own
documentation and views.

Most of the CellML exposures in the repository are currently of this type, with a main documentation page
containing navigation links to the model or models themselves.

The model pages have links that enable the user to do things like view the model equations, look at the citation
information, or run the model as an interactive session using the OpenCell application. These links are found in
the pane titled Views available on the right hand side of the page.

64 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.11: Example of a model exposure page

2.6. Creating CellML exposures 65

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

This tutorial contains instructions on how to create one of these standard CellML exposures, as well as information
about how to create other alternative types of exposure.

Creating standard CellML exposures

In this example I will use a fork of the the Beeler Reuter 1977 workspace. Creating a fork of a workspace creates
a clone of that workspace that you own, and can push changes to. You can fork any publicly available workspace
in the AUckland Physiome Repository. For more information on this feature, refer to the information on features
or collaboration, or see the relevant section of the tutorial.

At this point you are recommended to submit the workspace for publication, using the state: menu at the top right
of the workspace view page. This is especially important if you decide to make an exposure public, as having a
private workspace for a public exposure will impede access of linked data, such as images for the introduction to
that particular exposure.

Choose the revision to expose

As an exposure is created to present a particular revision of a workspace, the first thing to do is to navigate to that
revision. To do this, first find the workspace - if this is your own workspace, you can click on the My Workspaces
button in the navigation bar of the repository and find the workspace of interest in the listing displayed. After
navigating to your workspace, click on the history button in the menu bar.

Now you can select the revision of the workspace you wish to expose by clicking on the manifest of that revision.
Usually you will want to expose the latest revision, which appears at the top of the list.

After selecting the revision you wish to expose, click on the workspace actions menu at the far right end of the
menu bar and select create exposure.

Building the exposure

Selecting the create exposure option in the menu bar will bring you to the first page of the exposure wizard. This
web interface allows you to select the model files, documentation files, and settings that will be used to create the
exposure.

The initial page of the exposure creation wizard allows you to select the main documentation file and the first model
file. Select the HTML annotator option and the HTML documentation file for the workspace in the Exposure main
view section. For the New Exposure File Entry section, choose the CellML file you wish to expose, and select
CellML as the file type.

Note: Documentation should be written in HTML format. Some previous users of the CellML repository may be
familiar with the tmpdoc style documentation, which has be deprecated. For an example of what a fairly standard
HTML documentation file might look like, take a look at the documentation for the Beeler Reuter 1977 model.

Once you have selected the documentation and model files and their types, click on the Add button. This will take
you to the next step of the wizard, where you can select various options for the model you have chosen to expose,
and will allow you to add further model files to the exposure if desired.

The wizard shows a subgroup for each CellML file to be included in the exposure. For each CellML file, select
the following options:

• Documentation

– Documentation file - select the HTML file created to document the model

– View generator - select HTML annotator option

• Basic Model Curation

– Curation flags - CellML model repository curators may select flags according to the status of the
model

66 Chapter 2. Auckland Physiome Repository

http://models.cellml.org/workspace/beeler_reuter_1977/file/fdd29a005ffcf9a72d7ef2479cafb864ea1e887a/beeler_reuter_1977_documentation.html

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.12: The state menu is used to submit objects such as workspaces for publication. Submitted items
will be reviewed by site administrators and then published.

2.6. Creating CellML exposures 67

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.13: The revision history of a fork of the Beeler Reuter 1977 workspace

68 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.14: Selecting the manifest of the revision to expose

2.6. Creating CellML exposures 69

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.15: Selecting the main documentation and the first CellML model file

70 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.16: Note that if your workspace is not publicly accessible, there will be an informative note for this which
you can safely ignore as there are no process within the generation of the exposure that must require a publicly
accessible workspace.

2.6. Creating CellML exposures 71

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• License and Citation

– File/Citation format - select CellML RDF metadata to automatically generate a citation page using
the model RDF

– License - select Creative Commons Attributions 3.0 Unported, in the cases where the above option
is unsuitable.

• Source Viewer

– Language Type - select xml

• OpenCell Session Link

– Session File - select the session.xml if it has been created

After selecting the subgroup options, you need to select the Update button to apply the chosen options for the
exposure builder, as this is an independent subform to the main form. The options you selected will be ignored if
this Update button is not selected, and the options will be replaced by the default options when you click Build
before this was done.

For exposures where you wish to expose multiple models, click on the Add file button at this stage to create another
subgroup. You can then use this to set up all the same options listed above for the additional model file. Remember
to click Update when you have completed selecting the options for each subgroup before adding another subgroup.

After setting all the options for the models you wish to expose, click on the Build button. The repository software
will then create the exposure pages and display the main page of the exposure.

Making your work publicly accessible

In order to make the exposure visible and searchable, you will need to publish it. You can choose to submit your
exposure for review, so that the repository administrators or curators will know to publish it for you. Naturally, if
you have sufficient privileges you can publish it directly.

Other types of exposure

Because the exposure builder uses HTML documentation, it is possible to create customized types of exposure
that differ from the standard type shown above. For example, you might want to create an exposure that simply
documents and provides links to models in a workspace that are encoded in languages other than CellML. You can
also use the HTML documentation to provide tutorials or other documents, with resources stored in the workspace
and linked to from the HTML.

Examples of other exposure types:

• Andre’s Hodgkin & Huxley CellML tutorial

• Testing nested SED-ML proposals with CellML

• Aslanidi et al. cardiac models encoded in C

Making an exposure using “rollover”

As explained earlier, an exposure aims to bring a particular revision to the attention of users who are browsing and
searching the repository.

“Rolling over” an exposure is the method used when a workspace already has an existing exposure, and the
updates to the workspace have not fundamentally changed the structure of the workspace. This means that all
the information used in making the previous exposure is still valid for making a new exposure of a more recent
revision of the workspace. Strictly speaking, an exposure can be rolled over to an older revision as well, but this
is not the usual usage.

72 Chapter 2. Auckland Physiome Repository

http://models.cellml.org/e/e1
http://models.cellml.org/e/c2
http://models.cellml.org/e/ca

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.17: Selecting options for the model file subgroup

2.6. Creating CellML exposures 73

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.18: Publish your exposure to make it visible to others.

74 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Note: A forked workspace contains all of the revision history of the workspace it was created from, but has no
linkages to any of the exposures that existed for the original workspace. However, you may navigate to the history
of the original workspace and select any exposure, then select the wizard tab to the link to its exported structure,
from which the exposure can be migrated over. Please see the section on migrating exposure for more details.

From the view page of your workspace, select “exposure rollover”.

The exposure rollover button takes you to a list of revisions of the workspace, with existing exposures on the right
hand side, and revision ids on the left. Each revision id has a radio button, used to select the revision you wish to
create a new rolled over exposure for. Each existing exposure also has a radio button, used to select the exposure
you wish to base your new one on. The most common use case is to select the latest exposure and the latest
revision, and then click the Migrate button at the bottom of the list.

The new exposure will be created and displayed. When a new exposure is created, it is initially put in the private
state. This means that only the user who created it or other users with appropriate permissions can see it, and it

2.6. Creating CellML exposures 75

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

76 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

will not appear in search results or model listings. In order to publish the exposure, you will need to select submit
for publication from the state menu.

The state will change to “pending review”. The administrator or curators of the repository will then review and
publish the exposure, as well as expiring the old exposure.

Creating FieldML exposures

Section author: Dougal Cowan

FieldML models in the Auckland Physiome Repository are presented through exposures. A FieldML exposure has
some similarities to a CellML exposure - usually consisting of a main documentation page with some information
about the model, accompanied by a range of different views of the model data and or metadata. FieldML exposures
also allow the real-time three-dimensional display of model meshes within the browser through the use of the Zinc
plugin.

The example screenshots below show the main documentation page view and the 3D visualization provided by
the Zinc viewer.

Fig. 2.19: The main documentation view of a FieldML exposure

Creating the exposure files

To create a FieldML exposure, the following files will need to be stored in a workspace in the repository:

• The FieldML model file(s)

• An RDF file containing metadata about the model, and specifying the JSON file to be used to specify the
visualization.

• The JSON file that specifies the Zinc viewer visualization.

2.7. Creating FieldML exposures 77

http://models.physiomeproject.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 2.20: The main Zinc viewer view of the same FieldML exposure

78 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• Optionally, documentation (HTML) and images (PNG, JPG etc).

The following example RDF file from comes from the Laminar Structure of the Heart workspace in the repository:

1 <?xml version="1.0" encoding="utf-8"?>
2 <rdf:RDF
3 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:dc="http://purl.org/dc/elements/1.1/"
6 xmlns:dcterms="http://purl.org/dc/terms/"
7 xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"
8 xmlns:pmr2="http://namespace.physiomeproject.org/pmr2#">
9 <rdf:Description rdf:about="">

10 <dc:title>
11 Laminar structure of the Heart: A mathematical model.
12 </dc:title>
13 <dc:creator>
14 <rdf:Seq>
15 <rdf:li>LeGrice, I.J.</rdf:li>
16 <rdf:li>Hunter, P.J.</rdf:li>
17 <rdf:li>Smaill, B.H.</rdf:li>
18 </rdf:Seq>
19 </dc:creator>
20 <dcterms:bibliographicCitation>
21 American Journal of Physiology 272: H2466-H2476, 1997.
22 </dcterms:bibliographicCitation>
23 <dcterms:isPartOf rdf:resource="info:pmid/9176318"/>
24 <pmr2:annotation rdf:parseType="Resource">
25 <pmr2:type
26 rdf:resource="http://namespace.physiomeproject.org/pmr2/note#json_

→˓zinc_viewer"/>
27 <pmr2:fields>
28 <rdf:Bag>
29 <rdf:li rdf:parseType="Resource">
30 <pmr2:field rdf:parseType="Resource">
31 <pmr2:key>json</pmr2:key>
32 <pmr2:value>heart.json</pmr2:value>
33 </pmr2:field>
34 </rdf:li>
35 </rdf:Bag>
36 </pmr2:fields>
37 </pmr2:annotation>
38 </rdf:Description>
39 </rdf:RDF>

This file provides citation metadata and a reference to the resource that specifies the Zinc viewer JSON file which
will be used to describe the 3D visualisation of the FieldML model. The file breaks down into three main sections:

• Lines 3-8, namespaces used.

• Lines 10-23, citation metadata.

• Lines 24-37, resource description. Used to specify the JSON file that specifies the visualisation.

Example of the JSON file from the same (Laminar Structure of the Heart) workspace:

1 {
2 "View" : [
3 {
4 "camera" : [9.70448, -288.334, -4.43035],
5 "target" : [9.70448, 6.40667, -4.43035],
6 "up" : [-1, 0, 0],
7 "angle" : 40
8 }
9],

2.7. Creating FieldML exposures 79

http://models.physiomeproject.org/workspace/heart

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

10 "Models": [
11 {
12 "files": [
13 "heart.xml"
14],
15 "externalresources": [
16 "heart_mesh.connectivity",
17 "heart_mesh.node.coordinates"
18],
19 "graphics": [
20 {
21 "type": "surfaces",
22 "ambient" : [0.4, 0, 0.9],
23 "diffuse" : [0.4, 0,0.9],
24 "alpha" : 0.3,
25 "xiFace" : "xi3_1",
26 "coordinatesField": "heart.coordinates"
27 },
28 {
29 "type": "surfaces",
30 "ambient" : [0.3, 0, 0.3],
31 "diffuse" : [1, 0, 0],
32 "specular" : [0.5, 0.5, 0.5],
33 "shininess" : 0.5,
34 "xiFace" : "xi3_0",
35 "coordinatesField" : "heart.coordinates"
36 },
37 {
38 "type": "lines",
39 "coordinatesField" : "heart.coordinates"
40 }
41],
42 "elementDiscretization" : 8,
43 "region_name" : "heart",
44 "group": "Structures",
45 "label": "heart",
46 "load": true
47 }
48]
49 }

• Lines 2-8, sets up the camera or viewpoint for the initial Zinc viewer display.

• Lines 12-18, specifies the FieldML model files

• Lines 19-41, set up the actual visualisations of the mesh - in this case, two different surfaces and a set of
lines.

• Lines 42-46, specify global visualisation settings.

For more information on these settings, please see the cmgui documentation.

Note: The specifics of these RDF and JSON files are a work in progress, and may change with each new version
of the Zinc viewer plugin or PMR2.

Creating the exposure in the Auckland Physiome Repository

First you will need to create a workspace to put your model in, following the process outlined in the document on
working with workspaces.

• Upload your FieldML model files and Zinc viewer specification files.

80 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• Find revision of workspace you wish to expose and create exposure

Exposure wizard procedure

View generator as per CellML; select HTML annotator and HTML doc file

New exposure file entry: select .rdf file and select FieldML (JSON) type. Click Add.

• Documentation file - same as above

• Curation flags - none (should be removed?)

• No other settings

Click Update.

Click Build.

To see the 3D visualisation, you will need to have the latest Zinc plugin installed.

Embedded workspaces and their uses

Section author: David Nickerson

Todo

This section needs more work.

Workspaces in PMR are currently implemented as Mercurial repositories. One Mercurial feature that is quite
useful in the context of the Auckland Physiome Repository is nested repositories. Using the more general PMR2
concepts, we term such nesting as embedded workspaces.

Embedded workspaces:

• are intended to manage the separation of modules which are integrated to create a model;

• facilitate the sharing and reuse of model components independently from the source model;

• enable the development of the modules to proceed independently, thus the version of the workspaces em-
bedded is also tracked; and

• allow authors to make use of relative URIs when linking between data resources providing a file system
agnostic method to describe complex module relationships in a portable manner.

Workspaces can be embedded at a specific revision or set to track the most recent revision of the source workspace.
Changes made to the source workspace will not affect any embedding workspace until the author explicitly chooses
to update the embedded workspace. This provides the author with the opportunity to review the changesets and
make an informed decision regarding alterations to embedded revisions. Any alterations in the specific revision
of an embedded workspace is data captured in a changeset in the embedding workspace – thus providing a clear
provenance record of the entire dataset in the workspace.

Uses

Best practice

See also the recommendations from the Mercurial project.

2.8. Embedded workspaces and their uses 81

http://www.cmiss.org/ReleaseCenter/zinc/releases
http://mercurial.selenic.com/wiki/Subrepository
http://mercurial.selenic.com/wiki/Subrepository#Recommendations

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

CellML Curation in the legacy Physiome Model Repository

As the Auckland Physiome Repository contains much of the data ported over from the legacy software products
that powered what was called the CellML Model Repository, the curation system from that system was ported
to Auckland Physiome Repository verbatim. This document describing the curation aspect of the repository is
derived from documentation on the CellML site.

CellML Model Curation: the Theory

The basic measure of curation in a CellML model is described by the curation level of the model document. We
have defined four levels of curation:

• Level 0: not curated.

• Level 1: the CellML model is consistent with the mathematics in the original published paper.

• Level 2: the CellML models has been checked for (i) typographical errors, (ii) consistency of units, (iii) that
all parameters and initial conditions are defined, (iv) that the model is not over-constrained, in the sense that
it contains equations or initial values which are either redundant or inconsistent, and (v) that running the
model in an appropriate simulation environment reproduces the results published in the original paper.

• Level 3: the model is checked for the extent to which it satisfies physical constraints such as conservation of
mass, momentum, charge, etc. This level of curation needs to be conducted by specialised domain experts.

CellML Model Curation: the Practice

Our ultimate aim is to complete the curation of all the models in the repository, ideally to the level that they
replicate the results in the published paper (level 2 curation status). However, we acknowledge that for some
models this will not be possible. Missing parameters and equations are just one limitation; at this point it should
also be emphasised that the process of curation is not just about “fixing the CellML model” so that it runs in
currently available tools. Occasionally it is possible for a model to be expressed in valid CellML, but not yet able
to be solved by CellML tools. An example is the seminal Saucerman et al. 2003 model, which contains ODEs
as well as a set of non-linear algebraic equations which need to be solved simultaneously. The developers of the
CellML editing and simulation environment OpenCell are currently working on addressing these requirements.

The following steps describe the process of curating a CellML model:

• Step 1: the model is run through OpenCell and COR. COR in particular is a useful validation tool. It ren-
ders the MathML in a human readable format making it much easier to identify any typographical errors
in the model equations. COR also provides a comprehensive error messaging system which identifies ty-
pographical errors, missing equations and parameters, and any redundancy in the model such as duplicated
variables or connections. Once these errors are fixed, and assuming the model is now complete, we com-
pare the CellML model equations with those in the published paper, and if they match, the CellML model
is awarded a single star - or level 1 curation status.

• Step 2: Assuming the model is able to run in OpenCell and COR, we then go onto compare the CellML
model simulation output from COR and OpenCell with the published results. This is often a case of compar-
ing the graphical outputs of the model with the figures in the published paper, and is currently a qualitative
process. If the simulation results from the CellML model and the original model match, the CellML model
is awarded a second star - or level 2 curation status.

• Step 3: if, at the end of this process, the CellML model is still missing parameters or equations, or we
are unable to match the simulation results with the published paper, we seek help from the original model
author. Where possible, we try to obtain the original model code, and this often plays an invaluable role in
fixing the CellML model.

• Step 4: Sometimes we have been able to engage the original model author further, such that they take over
the responsibility of curating the CellML model themselves. Such models include those published by Mike
Cooling and Franc Sachse. In these instances the CellML model is awarded a third star - or level 3 curation
status. While this is laudable, ideally we would like to take the curation process one step further, such that

82 Chapter 2. Auckland Physiome Repository

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

level 3 curation should be performed by a domain expert who is not the author of the original publication
(i.e., peer review). This expert would then check the CellML model meets the appropriate constraints and
expectations for a particular type of model.

A point to note is that levels 1 and 2 of the CellML model curation status may be mutually exclusive - in our
experience, it is rare for a paper describing a model to contain no typographical errors or omissions. In this
situation, Version 1 of a CellML model usually satisfies curation level 1 in that it reflects the model as it is described
in the publication - errors included, while subsequent versions of the CellML model break the requirements for
meeting level 1 curation in order to meet the standards of level 2. Taking this idea further, this means that a model
with 2 yellow stars doesn’t necessarily meet the requirements of level 1 curation but it does meet the requirements
of level 2. Hopefully this conflict will be resolved when we replace the current star system with a more meaningful
set of curation annotations.

Ultimately, we would like to encourage the scientific modeling community - including model authors, journals
and publishing houses - to publish their models in CellML code in the Auckland Physiome Repository concurrent
with the publication of the printed article. This will eliminate the need for code-to-text-to-code translations and
thus avoid many of the errors which are introduced during the translation process.

CellML Model Simulation: the Theory and Practice

As part of the process of model curation, it is important to know what tools were used to simulate (run) the model
and how well the model runs in a specific simulation environment. In this case, the theory and the practice are
essentially the same thing, and carry out a series of simulation steps which then translate into a confidence level
as part of a simulator’s metadata for each model. The four confidence levels are defined as:

• Level 0: not curated (no stars);

• Level 1: the model loads and runs in the specified simulation environment (1 star);

• Level 2: the model produces results that are qualitatively similar to those previously published for the model
(2 stars);

• Level 3: the model has been quantitatively and rigorously verified as producing identical results to the
original published model (3 stars).

Glossary

Clone Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in
order to have a local copy of a repository to work in.

Embedded workspace

Embedded workspaces A Mercurial concept that allows workspaces to be nested within other workspaces.

Exposure

Exposures A publicly available page that provides access to and information about a specific revision of a
workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s)
contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed.
CellML files for example are presented with options such as code generation and mathematics display,
whereas FieldML models might offer a 3D view of the mesh.

Fork A copy of the workspace which includes all the original version history, but is owned by the user who
created the fork.

Mercurial Mercurial is a distributed version control system, used by the Physiome Model Repository software
to maintain a history of changes to files in workspaces. See a tour of the Mercurial basics for some good
introductory material.

PMR2 The software that powers the Auckland Physiome Repository.

2.10. Glossary 83

http://mercurial.selenic.com/
http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Pull

Pulling The term used with distributed version control systems for the action of pulling changes from one clone
of the repository into another. With PMR, this usually implies pulling from a workspace in the model
repository into a clone of the workspace on your local machine.

Push

Pushing The term used with distibuted version control systems for the action of pushing changes from one clone
of the repository into another. With PMR, this usually implies pushing from a workspace clone on your local
machine back to the workspace in the model repository, but could be into any other clone of the workspace.
See a tour of the Mercurial basics for some good introductory material.

Python Python is a programming language that lets you work more quickly and integrate your systems more
effectively. See http://python.org for all the details.

Synchronize Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

Workspace

Workspaces A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or
directory in which files are stored, with the added feature of being version controlled by the distributed
version control system called Mercurial.

Note: The teaching instance of the repository is a mirror of the main repository site found at http://models.
physiomeproject.org/, running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not permanent, and will be overwritten with
the contents of the main repository whenever the teaching instance is upgraded to a new release of PMR2. For this
reason, you can feel free to experiment and make mistakes when pushing to the teaching instance. Please subscribe
to the cellml-discussion mailing list to receive notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for instructions on how to migrate any content from the
teaching instance to the main (permanent) Auckland Physiome Repository.

Using SED-ML to specify simulations

Section author: Dougal Cowan

Hopefully PMR will support SED-ML simulations as part of the CellML views.

Todo

• Update all documentation to reflect workspace ID changes and user workspace changes, if they go ahead.

• Get embedded workspaces doc written.

• Get some best practice docs written.

84 Chapter 2. Auckland Physiome Repository

http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html
http://python.org
http://mercurial.selenic.com/
http://models.physiomeproject.org/
http://models.physiomeproject.org/
http://lists.cellml.org/mailman/listinfo

CHAPTER 3

OpenCOR

OpenCOR is an open source, cross-platform and CellML-based modelling environment. The following documen-
tation refers to the 0.3 version of OpenCOR, for which supported platforms can be found here. This version of
OpenCOR can be downloaded from the OpenCOR download page.

User Interfaces

OpenCOR provides two types of user interfaces:

Command Line Interface (CLI)

Help

$./OpenCOR -h
Usage: OpenCOR [-a|--about] [-c|--command [<plugin>::]<command> <options>] [-h|--
→˓help] [-p|--plugins] [-s|--status] [-v|--version] [<files>]
-a, --about Display some information about OpenCOR
-c, --command Send a command to one or all the CLI plugins
-h, --help Display this help information
-p, --plugins Display all the CLI plugins
-s, --status Display the status of all the plugins
-v, --version Display the version of OpenCOR

Version

$./OpenCOR -v
OpenCOR 0.3 (64-bit)

About

85

http://www.opencor.ws/
http://opencor.ws/user/licensing.html
http://www.cellml.org/
http://opencor.ws/downloads/index.php

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

$./OpenCOR -a
OpenCOR 0.3 (64-bit)
OS X 10.9 (Mavericks)
Copyright 2011-2014

OpenCOR is a cross-platform CellML-based modelling environment, which can be used
→˓to organise, edit, simulate and analyse CellML files.

Plugins

$./OpenCOR -p
The following plugin is loaded:
- CellMLTools: a plugin to access various CellML-related tools.

Status

$./OpenCOR -s
The following plugins are available:
- CellMLAPI: the plugin is loaded and fully functional.
- CellMLSupport: the plugin is loaded and fully functional.
- CellMLTools: the plugin is loaded and fully functional.
- Compiler: the plugin is loaded and fully functional.
- Core: the plugin is loaded and fully functional.
- CoreSolver: the plugin is loaded and fully functional.
- LLVM: the plugin is loaded and fully functional.

Command

$./OpenCOR -c help
Commands supported by CellMLTools:

* Display the commands supported by CellMLTools:
help

* Export <in_file> to <out_file> using <predefined_format> as the destination
→˓format or <user_defined_format_file> as the file describing the destination
→˓format:

export <in_file> <out_file> [<predefined_format>|<user_defined_format_file>]
<predefined_format> can take one of the following values:

cellml_1_0: to export a CellML 1.1 file to CellML 1.0
$./OpenCOR -c CellMLTools::export in.cellml out.cellml cellml_1_0
$./OpenCOR -c CellMLTools::export http://mydomain.com/in.cellml out.txt format.xml

Graphical User Interface (GUI)

OpenCOR offers a consistent GUI across the different platforms it supports. The look and feel of the interface is
determined by the plugins which are selected. The first time you run OpenCOR, it will look something like this:

86 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The central area is used to interact with files. By default, no files are open, hence the OpenCOR logo is shown
instead. To the sides, there are dockable windows, which provide additional features. Those windows can be
dragged and dropped to the top or bottom of the central area:

Alternatively, they can be undocked:

3.1. User Interfaces 87

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Or even closed, either by directly closing the window itself or by unticking the corresponding menu item (under
the View menu, or the Help menu for the Help window):

To unselect all the plugins will result in OpenCOR looking ‘empty’:

88 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Menu

• File:

– Exit ~ Alt+F4: exit OpenCOR.

• View:

– Status Bar: show/hide the status bar.

– Full Screen ~ F11: switch to / back from full screen mode.

• Tools:

– Language: select the language to be used by OpenCOR.

– Plugins...: un/select plugins.

– Reset All: reset all your settings.

• Help:

– Home Page: open the OpenCOR home page.

– About...: some general information about OpenCOR.

Plugins

OpenCOR is a plugin-based application. This means that if no plugins are selected, then OpenCOR can do next to
nothing.

As can be seen by opening the Plugins dialog box (by selecting the Tools → Plugins menu) and by unselecting
Show only selectable plugins (if necessary), OpenCOR supports different types of plugins:

3.2. Plugins 89

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

You can select which plugins you want to use. However, plugins which are needed by other plugins (e.g. the Core
plugin is needed by the CellMLModelRepositoryWindow plugin) cannot be directly selected. Instead, they will be
automatically selected if and only if they are needed by at least one other plugin.

Most of the selectable plugins come with some kind of a GUI, which is of one of two types:

• Window: such a plugin (e.g. the CellMLModelRepositoryWindow and HelpWindow plugins) can be docked
around the central area, undocked or hidden, as illustrated here.

• View: such a plugin (e.g. the CellMLAnnotationView and SingleCellView plugins) is used to interact with a
file, be it to edit it, simulate it or analyse it.

API

(Non-selectable) API plugins are used to provide access to various APIs:

• CellMLAPI: a plugin to access the CellML API.

Data Store

Data Store plugins are used to store and manipulate simulation data:

• CSVDataStore: a CSV specific data store plugin.

There is also one non-selectable Data Store plugin:

• CoreDataStore: the core data store plugin.

Editing

Editing plugins are used to edit files:

90 Chapter 3. OpenCOR

http://cellml-api.sourceforge.net/
http://en.wikipedia.org/wiki/Comma-separated_values

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• CellMLAnnotationView: a plugin to annotate CellML files.

• RawCellMLView: a plugin to edit CellML files using the raw CellML format.

• RawView: a plugin to edit any file.

There are also some non-selectable Editing plugins:

• CoreCellMLEditing: the core CellML editing plugin.

• CoreEditing: the core editing plugin.

Miscellaneous

Miscellaneous plugins are used for various purposes:

• CellMLTools: a plugin to access various CellML-related tools.

• HelpWindow: a plugin to provide help.

There are also some non-selectable Miscellaneous plugins:

• Compiler: a plugin to support code compilation.

• Core: the core plugin.

Organisation

Organisation plugins are used to organise files:

• CellMLModelRepositoryWindow: a plugin to access the CellML Model Repository.

• FileBrowserWindow: a plugin to access your local files.

• FileOrganiserWindow: a plugin to virtually organise files.

Simulation

Simulation plugins are used to simulate files:

• SingleCellView: a plugin to run single cell simulations.

Solver

Solver plugins are used to provide access to various solvers:

• CVODESolver: a plugin that uses CVODE to solve ODEs.

• ForwardEulerSolver: a plugin that implements the Forward Euler method to solve ODEs.

• FourthOrderRungeKuttaSolver: a plugin that implements the fourth-order Runge-Kutta method to solve
ODEs.

• HeunSolver: a plugin that implements the Heun method to solve ODEs.

• IDASolver: a plugin that uses IDA to solve DAEs.

• KINSOLSolver: a plugin that uses KINSOL to solve non-linear algebraic systems.

• SecondOrderRungeKuttaSolver: a plugin that implements the second-order Runge-Kutta method to solve
ODEs.

There is also a non-selectable Solver plugin:

• CoreSolver: the core solver plugin.

3.2. Plugins 91

http://cellml.org
http://cellml.org
http://cellml.org
http://cellml.org
http://models.cellml.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Support

(Non-selectable) support plugins are used to provide support for various third-party libraries and APIs:

• CellMLSupport: a plugin to support CellML.

• QScintillaSupport: a plugin to support QScintilla.

Third-party

(Non-selectable) third-party plugins are used to provide access to various third-party libraries:

• LLVM: a plugin to access LLVM (as well as Clang).

• QScintilla: a plugin to access QScintilla.

• Qwt: a plugin to access Qwt.

• SUNDIALS: a plugin to access CVODE, IDA and KINSOL solvers from the SUNDIALS library.

Widget

(Non-selectable) widget plugins are used to provide access to various ad hoc widgets:

• Editor: a plugin to edit and display text.

• EditorList: a plugin to handle issues in a text editor.

• Viewer: a plugin to visualise mathematical equations.

Glossary

Clone Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in
order to have a local copy of a repository to work in.

Embedded workspace

Embedded workspaces A Mercurial concept that allows workspaces to be nested within other workspaces.

Exposure

Exposures A publicly available page that provides access to and information about a specific revision of a
workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s)
contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed.
CellML files for example are presented with options such as code generation and mathematics display,
whereas FieldML models might offer a 3D view of the mesh.

Fork A copy of the workspace which includes all the original version history, but is owned by the user who
created the fork.

Mercurial Mercurial is a distributed version control system, used by the Physiome Model Repository software
to maintain a history of changes to files in workspaces. See a tour of the Mercurial basics for some good
introductory material.

Pull

Pulling The term used with distributed version control systems for the action of pulling changes from one clone
of the repository into another. With PMR, this usually implies pulling from a workspace in the model
repository into a clone of the workspace on your local machine.

Push

92 Chapter 3. OpenCOR

http://mercurial.selenic.com/
http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Pushing The term used with distibuted version control systems for the action of pushing changes from one clone
of the repository into another. With PMR, this usually implies pushing from a workspace clone on your local
machine back to the workspace in the model repository, but could be into any other clone of the workspace.
See a tour of the Mercurial basics for some good introductory material.

Python Python is a programming language that lets you work more quickly and integrate your systems more
effectively. See http://python.org for all the details.

Synchronize Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

Workspace

Workspaces A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or
directory in which files are stored, with the added feature of being version controlled by the distributed
version control system called Mercurial.

Supported platforms

OpenCOR can be used on the following versions of Windows, Linux and OS X.

Windows

OpenCOR is supported on the 32-bit and 64-bit versions of Windows XP and later.

Linux

• OpenCOR 0.1.x and 0.2: supported on both the 32-bit and 64-bit versions of Ubuntu 12.04 LTS (Precise
Pangolin) and later.

• OpenCOR 0.3: supported on both the 32-bit and 64-bit versions of Ubuntu 14.04 LTS (Trusty Tahr) and
later.

Note: in all cases, OpenCOR may also work with earlier versions of Ubuntu, as well as with other Linux distri-
butions, but additional system libraries may be needed in the latter case.

OS X

• OpenCOR 0.1.x: supported on OS X 10.8 (Mountain Lion) and later.

• OpenCOR 0.2 and later: supported on Mac OS X 10.7 (Lion) and later.

CellMLAnnotationView Plugin

The CellMLAnnotationView plugin can be used to annotate CellML files. If you open a CellML file which does
not contain any annotation, then it will look something like this:

3.4. Supported platforms 93

http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html
http://python.org
http://mercurial.selenic.com/
http://windows.microsoft.com/
http://www.linux.com/
http://www.apple.com/osx/
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/OS_X
http://en.wikipedia.org/wiki/OS_X

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

All the CellML elements which can be annotated are listed to the left of the view. If you right click on any of
them, you will get a popup menu which you can use to expand/collapse all the child nodes, as well as remove the
metadata associated with the current CellML element or the whole CellML file:

Annotate a CellML element

Say that you want to annotate the sodium_channel component. First, you need to select it:

94 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Next, you need to specify a BioModels.net qualifier. If you do not know which one to use, click on the button
to get some information about the current BioModels.net qualifier:

From there, go through the list of BioModels.net qualifiers until you find the one you are happy with. Here, we
will use bio:isVersionOf:

3.5. CellMLAnnotationView Plugin 95

http://biomodels.net/qualifiers/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Now, you need to retrieve some possible ontological terms to describe the sodium_channel component. For
this, you must enter a search term which in our case is going to be sodium channel (note: regular expressions
are supported). As can be seen, OpenCOR returns 12 possible ontological terms:

A quick look through the list tells us that you might want to use the one for voltage-gated sodium
channel complex. If you want to know more about the GO resource, you can click on its corresponding
link:

Similarly, if you want to know more about the GO identifier:

96 Chapter 3. OpenCOR

http://en.wikipedia.org/wiki/Regular_expression

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Now that you are happy with your choice of ontological term, you can associate it with the sodium_channel
component by clicking on its corresponding button:

As you will have seen, the ontological term you have just added cannot be added anymore, but it can be removed
by clicking on its corresponding button or by using the context menu (see above).

Now, say that you also want to add the next ontological term. You can obviously do so by clicking on the corre-
sponding button, but you could also enter its resource-id duple, e.g. go/GO:0005248 (i.e. <resource>/
<id>) in the term field. Indeed, OpenCOR will recognise this ‘term’ as being a a resource-id duple and will offer
you to add its corresponding ontological term directly:

3.5. CellMLAnnotationView Plugin 97

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Unrecognised annotations

Annotations consist of RDF triples which are made of a subject, a predicate and an object. OpenCOR recognises
RDF triples which subject identifies a CellML element while it expects the predicate to be a BioModels.net
qualifier and the object an ontological term.

Ontological terms used to be identified using MIRIAM URNs, but these have now been deprecated in favour of
identifiers.org URIs. OpenCOR recognises both, but it will only serialise annotations using identifiers.org URIs.

Now, it may happen that a file contains annotations that are not recognised by OpenCOR. In this case, OpenCOR
will display the annotations as a simple list of RDF triples:

If you ever come across a type of annotations which you think OpenCOR ought to recognise, but does not, then
please do contact us.

CellMLModelRepositoryWindow Plugin

The CellMLModelRepositoryWindow plugin offers an interface to the CellML Model Repository. By default, it
lists all the CellML models found in the repository:

98 Chapter 3. OpenCOR

http://www.w3.org/TR/rdf-concepts/#section-triples
http://biomodels.net/qualifiers/
http://biomodels.net/qualifiers/
http://www.ebi.ac.uk/miriam/main/mdb?section=use
http://www.identifiers.org/
http://www.opencor.ws/user/contactUs.html
http://models.cellml.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The list can then be filtered. For example, if you enter Noble as a filter, you will get:

To click on any of the listed links will open the workspace for that model in your (default) web browser. From
there, you can retrieve the latest exposure for that model.

CellMLTools Plugin

The CellMLTools plugin consists of various CellML-related tools, which can be accessed through the Tools menu.

CellML File Export To...

These tools can be used to export a CellML model to various formats:

• CellML 1.0: to flatten a CellML 1.1 model.

• User-defined format: to export a CellML model to some user-defined format.

Note: The CellML 1.0 export is adapted from Jonathan Cooper’s CellML 1.1 to 1.0 converter and therefore has
the same limitations.

3.7. CellMLTools Plugin 99

http://cellml.org
http://www.cellml.org/tools/jonathan-cooper-s-cellml-1-1-to-1-0-converter/versionconverter-tar.bz2/view

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

FileBrowserWindow Plugin

The FileBrowserWindow plugin offers a convenient way to access your physical files, remembering the folder or
file that was selected when you last ran OpenCOR. By default, it will select your home directory:

As you would expect, to double click on a folder will expand its contents, as can be seen by double clicking on
the Windows directory:

On the other hand, to double click on a file will result in it being opened in OpenCOR. The rendering of the file
will depend on the current view being selected. In the case of the CellML Annotation view, it will look something
like this:

100 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Folders and files can also be dragged from the File Browser window and dropped onto the File Organiser window.

Tool bar

Go to the home folder

Go to the parent folder

Go to the previous folder or file

Go to the next folder or file

FileOrganiserWindow Plugin

The FileOrganiserWindow plugin allows you to organise your files in a virtual manner, i.e. independently of where
they are physically located. Your virtual environment is remembered from one session to another and is originally
empty:

Now, say that you are working on a specific project. You might then want to create a (virtual) folder, which

contains (a virtual link to) all the files you need for your project. For this, you first need to click on the button
in the toolbar (or use the context menu). This will add a folder to your virtual environment:

3.9. FileOrganiserWindow Plugin 101

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

You can rename the folder as you wish, as well as create other (sub-)folders, if needed:

You can also move the (sub-)folders around by dragging and dropping them within your virtual environment, or

delete an existing (sub-)folder by clicking on the button in the toolbar (or by using the context menu):

Next, you might want to open the File Browser window, so you can start dragging and dropping files into your

102 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

virtual environment (alternatively, you can use your system’s file manager):

As for folders, you can move and delete your (virtual) files:

Tool bar

Create a new folder

Delete the current folder(s) and/or link(s) to the current file(s)

HelpWindow Plugin

The HelpWindow plugin provides some user documentation that looks as follows:

3.10. HelpWindow Plugin 103

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The contents of the documentation is the same as the one that can be found in the user documentation section of
the OpenCOR website. This includes a menu that gets shown whenever you move your mouse pointer over the
information icon (top right):

In addition to what is shown on the website, the HelpWindow plugin also displays special links, which when
clicked send a command to OpenCOR. For example, open the current page both in OpenCOR and on the Open-
COR website. Now, if you check the bold text below, you will see that its contents is slightly different, depending
on whether you are reading this in OpenCOR or from the OpenCOR website:

To open the About box, select the Help → About... menu...

Tool bar

Go to the home page

Go back

Go forward

Copy the selection to the clipboard

Reset the size of the help page contents

104 Chapter 3. OpenCOR

http://www.opencor.ws/user/index.html
http://www.opencor.ws/
http://www.opencor.ws/user/plugins/miscellaneous/HelpWindow.html
http://www.opencor.ws/user/plugins/miscellaneous/HelpWindow.html

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Zoom in the help page contents

Zoom out the help page contents

Print the help page contents

RawCellMLView Plugin

The RawCellMLView plugin can be used to edit CellML files in their raw format using a text editor. If you open
a file, it will look something like:

Besides using syntax highlighting, the text editor behaves in exactly the same way as the text editor in the Raw
view.

The panel above the text editor is used to visualise mathematical equations in real-time. You just need the caret to
be within a valid apply MathML block:

If the equation is not valid, a warning sign gets displayed:

3.11. RawCellMLView Plugin 105

http://cellml.org/
http://www.w3.org/Math/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The equation viewer can be customised using its context menu:

The font size can thus be optimised, so that an equation can take as much space as possible when rendered.
Subscripts are also supported (e.g. a_b will be rendered as ab), as are Greek symbols (i.e. alpha, beta, etc. are
replaced with 𝛼, 𝛽, etc.) and digit grouping (e.g. 1000 will be rendered as 1,000). A rendered equation can also
be copied to the clipboard for use in another program.

The panel below the text editor is used to list any CellML issue that results from trying to validate a CellML file:

106 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

If the CellML file is valid, then a dialog box confirming its validity is displayed:

Otherwise, the bottom panel lists all the issues with the CellML file:

To double click on an issue will get the text editor to navigate to the corresponding line.

3.11. RawCellMLView Plugin 107

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

RawView Plugin

The RawView plugin can be used to edit text-based files. If you open a file, it will look something like:

The bluish line at the top is used to highlight the line that contains the caret, which line and column numbers can
be found at the bottom left of the screen, together with the current editing mode (INS: insert, OVR: overwrite).

The size of the text can be increased and decreased by pressing Control-+ (or Control-=) and Control--,
respectively. You can also change the size of the text by pressing Control and moving the mouse wheel up or
down. To reset the font size, press Control-0.

108 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

To change the size of the text will do so for all the files that use this view and will be remembered from one session
to another.

Traditional editing features can be accessed through the Edit menu, various keyboard shortcuts and the context
menu of the editor:

3.12. RawView Plugin 109

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The find/replace feature can be activated by, for example, pressing Control-F (and hidden by pressing ESC),
as can be seen at the bottom of the screen:

As soon as you enter some text in the Find field, the view will jump to the first occurrence of that text. You
can then search for the next or previous occurrence of that text by pressing F3 (or Control-G, depending on
your operating system) and Shift-F3 (or Control-Shift-G), respectively. You can make the search case
sensitive, look for whole words only and/or use a regular expression by selecting the requested option(s) from the
drop-down menu to the left of the Find field:

110 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

To replace some text, you can use the Replace with field. From there, use one of the Replace, Replace & Find and
Replace All buttons at the bottom right of the screen.

SingleCellView plugin

The SingleCellView plugin can be used to run CellML models which consists of either a system of ordinary
differential equations (ODEs) or differential algebraic equations (DAEs). The system may be non-linear.

Open a CellML file

Upon opening a CellML file, OpenCOR will check that it can be used for simulation. If it cannot, then a message
will describe the issue:

Alternatively, if the CellML file is valid, then the view will look as follows:

3.13. SingleCellView plugin 111

http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Differential_algebraic_equation
https://en.wikipedia.org/wiki/Nonlinear_system

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The view consists of two main parts, the first of which allows you to customise the simulation, the solver and
the model parameters. The second part is used to plot simulation data. In the Parameters section, each model
parameter has an icon associated with it to highlight its type:

Variable of integration

(Editable) constant

Computed constant

(Editable) state

Rate

Algebraic

Simulate an ODE model

To simulate a model, you need to provide some information about the simulation itself, i.e. its starting point,
ending point and point interval. Then, you need to specify the solver that you want to use. The solvers available
to you will depend on which solver plugins you selected, as well as on the type of your model (i.e. ODE or DAE).
In the present case, we are dealing with an ODE model and all the solver plugins are selected, so OpenCOR offers
CVODE, forward Euler, Heun, Midpoint, and second- and fourth-order Runge-Kutta as possible solvers for our
model.

Each solver comes with its own set of properties which you can customise. For example, if we select Euler

112 Chapter 3. OpenCOR

http://computation.llnl.gov/casc/sundials/description/description.html#descr_cvode
http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Heun's_method
http://en.wikipedia.org/wiki/Midpoint_method
http://en.wikipedia.org/wiki/Runge-Kutta_methods

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

(forward) as our solver, then we can customise its Step property:

At this stage, we can run our model by pressing the F9 key or by clicking on the button. Then, or before, you
can add a graph. All the model parameters are listed to the bottom-left of the view, grouped by components in
which they were originally defined. To add a graph, right click on a model parameter and select against which other
model parameter you want it to be plotted. For example, to create a graph for V (from the membrane component)
against the variable of integration (i.e. time since the simulation properties are expressed in milliseconds):

You can get the information associated with a graph by double clicking on it:

3.13. SingleCellView plugin 113

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The Model property is used to associate the graph with a particular CellML file. By default, it has a value of
Current, which means that if you select another CellML file, then OpenCOR will try to associate the graph with

it (the icon will be shown next to the check box, if it cannot, as well as next to the X and/or Y properties to

highlight which model parameter(s) could not be found in the other CellML file). The icon indicates that the

graph is not locked, i.e. its Model property has a value of Current, while the icon is used when a graph is
specifically associated with a CellML file (resulting in a red trace rather than a blue one). The X and Y properties
can be modified either by editing their value or by right clicking on them and selecting another model parameter
from the context menu, which can also be used to add or remove a graph.

Back to the simulation, you can see that it failed with several model parameters having a value of nan (i.e. not
a number). This is because the solver was not properly set up: its Step property is too big. If you set it to 0.01

milliseconds, reset all the model parameters (by clicking on the button) and clear the simulation data (by

clicking on the button), and restart the simulation, then you get the following trace:

The (roughly) same trace can also be obtained using the CVODE solver:

114 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

However, the simulation is so quick to run that we do not get a chance to see the progress of the simulation.

Between the and buttons, there is a wheel which we can use to add a short delay between the output of
two data points. Here, we set the delay to 13 ms. This allows us to rerun the simulation, after having reset the
model parameters, and pause it at a point of interest:

Now, we can modify any of the model parameters identified by either the or icon, but let us just modify
g_Na_max (under the sodium_channel component) by setting its value to 0 milliS_per_cm2. Then,
we resume the simulation and we can see the effect on the model:

3.13. SingleCellView plugin 115

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

If you want, you can export all the simulation data to a comma-separated values (CSV) file. To do so, you need to

click on the button. Alternatively, if you want to create other graphs, but do not want them on the same graph

panel as the existing one, you can click on the button to create a new graph panel:

You might have noticed that the bottom graph panel has a blue vertical line to its left. This is to indicate that it
is the currently selected graph panel (a graph panel can be selected by clicking on it). Something else you might
have noticed is that the graphs area is now empty. This is because there are currently no graphs associated with
the graph panel. Just for illustration, you can create a graph to plot V (from the membrane component) against V’
(also from the membrane component):

116 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

You can create as many graph panels (and graphs) as you want. The current graph panel or all the graph panels

(but the top one) can be removed by clicking on the button.

Simulate a DAE model

To simulate a DAE model is similar to simulating an ODE model, except that OpenCOR only offers one DAE
solver (IDA) at this stage:

Simulate a CellML 1.1 model

So far, we have only simulated CellML 1.0 models, but we can also simulate CellML 1.1 models, i.e. models
which import units and/or components from other models:

3.13. SingleCellView plugin 117

http://computation.llnl.gov/casc/sundials/description/description.html#descr_ida

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Simulate several models at the same time

Each simulation is run in its own thread which means that several simulations can be run at the same time.
Simulations running in the ‘background’ display a small progress bar in the top tab bar while the ‘foreground’
simulation uses the main progress bar at the bottom of the view:

Plotting area

The plotting area offers several features that can be activated by:

• Zooming in/out:

– Holding the right mouse button down, and moving the mouse to the bottom-right/top-left to zoom
in/out; or

– Moving the mouse wheel up/down; or

– Using the context menu.

• Resetting the zoom level:

– Double-clicking on the left mouse button; or

– Using the context menu.

118 Chapter 3. OpenCOR

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• Zooming into a region of interest:

– Pressing Ctrl and holding the right mouse button down, and moving the mouse around.

• Panning:

– Holding the left mouse button down, and moving the mouse around.

• Showing the coordinates of any point:

– Pressing Shift and holding the left mouse button down, and moving the mouse around.

• Copying the contents of the plotting area to the clipboard:

– Using the context menu.

Tool bar

Run the simulation

Pause the simulation

Stop the simulation

Reset all the model parameters

Clear the simulation data

Add a graph panel

Remove the current graph panel or all the graph panels

Export the simulation data to CSV

3.13. SingleCellView plugin 119

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

120 Chapter 3. OpenCOR

CHAPTER 4

Musculoskeletal Atlas Project (MAP) Client

The Musculoskeletal Atlas Project Client (MAP Client) is a cross-platform framework for managing workflows.
A workflow consists of a number of connected workflow steps. The MAP Client framework is a plugin-based
application where the plugins are workflow steps.

The MAP Client framework has a number of tools for creating, managing and sharing workflows, workflow steps
and the outputs generated from the workflow steps. It is an application written in Python and based on Qt, the
cross-platform application and UI framework.

One of the central ideas for the MAP Client is to allow users to easily develop and share their own plug-
ins/workflow steps. The requirements for developing a workflow step have been kept as low as practicable allowing
creators to concentrate on the practical implementation of the workflow step rather than concerning themselves
with conforming to the plugin API. The Plugin Wizard tool greatly simplifies the first stage in creating a workflow
step and generates a considerable amount of the skeleton code required.

Another of the central ideas for the MAP Client is making the output from the workflow steps available and
searchable to others. To achieve this the MAP Client uses the Physiome Model Repository (PMR). PMR has been
designed to provide data upload, storage and distribution capabilities, despite the name PMR is not just for models
but for any data that users wish to track development changes of. The MAP Client has the PMR Tool to make use
of this facility. Using the PMR Tool we can make sure the important data that a workflow produces is secure and
available into the future.

A feature of having a plugin based framework is that it is possible for groups to share their workflows and workflow
steps without requiring a lot of extraneous software. Also having users create and share their plugins increases
the flexibility of the MAP Client and distances users from relying on an external team of developers. To further
the reach of workflow steps if they are made to be as general as possible we can increase the re-usability and
shareability for other users to use in their own work or alternatively extend to fit their purposes.

Further details on the MAP Client are available in the documents listed below.

MAP Client Installation and Setup Guide

This document describes how to install and setup the MAP Client software for use on your machine. The MAP
Client software is a Python application that uses the PySide Qt library bindings.

The Installation section details getting the MAP Client and it’s dependencies installed on your system. There are
two main ways of getting the MAP Client installed on your operating system. This document will cover both of
those methods. For users and plugin developers the suggested method is to Install Using Pip, for developers of
the MAP Client framework the suggested method is to Install Using Bazaar.

121

https://simtk.org/home/map

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The Install Using Pip method is covered first followed by the instructions on how to Install Using Bazaar. For
most operating systems Python is already installed but for some, most notably Windows based operating systems,
it is not. For instructions on installing Python for Windows based operating systems see the Installing Python on
Windows section.

The Setup section details getting the MAP Client setup with external plugins.

Installation

Install Using Pip

Pip is a tool for installing and managing Python packages. It is particularly suited for the installation and man-
agement of source distributions of Python software, of which the MAP Client is one. The downside to using pip
is that it is not great for installing binary packages, and there is one such binary package that the MAP Client
requires, namely PySide. This creates something of a problem for the installation of the MAP Client. To make the
installation via pip as easy as possible we must do some of the installation manually.

The manual part of the installation concerns installing PySide. For PySide we need to first install it, for Ubuntu:

sudo apt-get install python-pyside pyside-tools

For OSX download the appropriate PySide binaries from the qt-project and follow the instructions in the dmg. For
Windows download the PySide installer binaries from the qt-project, make sure the binaries for PySide match the
installed Python you have and follow the instructions in the installer.

Then we need to let pip know that PySide is installed, this takes the form of creating an empty file called ‘PySide-
X.Y.Z.egg-info’ in the site-packages or dist-packages directory, depending on where your PySide libraries were
installed. The X.Y.Z are given values that match the actual version of PySide you have. For example on Ubuntu I
would create the file:

sudo touch /usr/lib/python2.7/dist-packages/PySide-1.1.2.egg-info

and on Windows I would create the file:

echo pyside > c:\Python27\Lib\site-packages\PySide-1.1.2.egg-info

and on Mac OSX I would create the file:

sudo touch /somewhere/PySide-1.1.2.egg-info

At this point we can hand over to pip to finish the installation for us, if you don’t have pip installed then read the
section on Installing Pip. The command for installing the MAP Client is:

pip install mapclient

The MAP Client application should now be installed on your system. It can be launched from the command line
with this command:

mapclient

which should result in an application window similar to that shown below.

The MAP Client relies heavily on plugins to do anything interesting, you can either create these yourself or add
already available ones to your application by downloading them and using the Plugin Manager Tool in the MAP
Client, read the documents MAP Features Demonstration and MAP Plugin Creator Wizard to learn more.

Install Using Bazaar

Bazaar is a distributed revision control tool. It is used by Launchpad for open source project hosting where the
MAP Client source code is situated. To get bazaar use you systems package management system to install it. If
you are on windows then download and install it from:

122 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

http://qt-project.org/wiki/PySide_Binaries_MacOSX
http://qt-project.org/wiki/PySide_Binaries_Windows

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

http://wiki.bazaar.canonical.com/Download

and checkout the source code and manually setup the required software

Installing Pip

Pip is a tool for installing and managing Python packages. It relies on setuptools to work, first you must install
setuptools which has very good instructions available here

https://pypi.python.org/pypi/setuptools#installation-instructions

Next test to make sure that easy_install is available, open a command window and issue the command:

easy_install --version

If this command prints out the version of setuptools you have installed then you can install pip with the command:

easy_install pip

otherwise you will probably need to adjust the PATH system variable so that the easy_install application is avail-
able.

Installing Python on Windows

This section is for setting up Python on Windows as other operating systems supported by the MAP Client already
have Python available. The MAP Client framework is written in Python and is designed to work with Python 2
and Python 3. The MAP Client framework is tested against Python 2.6, Python 2.7 and Python 3.3 and should
work with any of these Python libraries.

With a Python installation for windows there are a number of choices to make:

1. Which version?

2. 32-bit or 64-bit?

The choices made here must be the same for PySide. The current recommendation is to choose the 64 bit version
of the latest Python 2.7 binary release. Current versions of Python are available from:

http://www.python.org/download/

Downloaod an msi installer that matches your choices and follow the onscreen prompts. Make sure to add the
Python and Python\Scripts folders to your system PATH.

4.1. MAP Client Installation and Setup Guide 123

http://wiki.bazaar.canonical.com/Download
https://pypi.python.org/pypi/setuptools#installation-instructions
http://www.python.org/download/

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Setup

External Plugins

The installation of external MAP Client plugins is a two step process. The first step is to download the plugins
onto the local file system and the second step is to use the MAP plugin manager to get the MAP Client to load
them.

There is a github orginisation which has a collection of MAP Client plugins. Some of the plugins here are more
advanced and have a dependency on the Zinc and PyZinc libraries. To use these plugins please read the Zinc and
PyZinc section on how to setup them up.

Zinc and PyZinc

Zinc is an advanced field manipulation and visualisation library and PyZinc provides Python bindings to the Zinc
library. The MAP client is able to make use of Zinc for advanced visualisation and image processing steps through
PyZinc. Binaries for Zinc and PyZinc are available from here and here for Linux, Windows, and OS X.

First install Zinc, for Ubuntu download the debian package and install it with the folowing command:

sudo dpkg -i zinc-X.Y.Z-x86_64-Ubuntu-10.04.4-LTS.deb

for Windows download the executable installer and follow the onscreen instructions. For Mac OSX download the
dmg and follow the onscreen instructions. Archived versions exist for installing the Zinc library manually if you
prefer.

To get PyZinc installed, follow these steps:

1. Download the PyZinc archive that matches the Zinc library already downloaded.

2. Extract the downloaded PyZinc archive (unzip on Windows, tar for Ubuntu and Mac OSX).

3. In a command window, make the current directory the directory where PyZinc was extracted.

4. Execute the following command: python setup.py install.

note:

The Zinc and PyZinc packages must have the same version
number.

MAP Features Demonstration

Section author: Hugh Sorby

Note: MAP is currently under active development, and this document will be updated to reflect any changes to
the software or new features that are added. You can follow the development of MAP at the launchpad project.

This document details the features of MAP, a cross-platform framework for managing workflows. MAP is a
plugin-based application that can be used to create workflows from a collection of workflow steps.

In this demonstration is based on version 0.9.0 of MAP, available from the project downloads. Directions for
installing MAP and getting the MAP plugins are available in the MAP Client Installation and Setup Guide.

In this demonstration we will cover the features of MAP. We will start with a quick tour and then create a new
workflow that will help us segment a region of interest from a stack of images.

124 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

https://github.com/mapclient-plugins
http://physiomeproject.org/software/zinclibrary/
http://physiomeproject.org/software/pyzinc/
http://physiomeproject.org/software/zinclibrary/download
http://physiomeproject.org/software/pyzinc/download
https://simtk.org/home/map
http://launchpad.net/mapclient
https://simtk.org/home/map
https://launchpad.net/mapclient/+download

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Quick Tour

When you first load MAP, it will look something like this:

In the main window we can see three distinct areas that make up the workflow management side of the software.
These three areas are the menu bar (at the top), the step box (on the left) that contains the steps that you can use to
create your workflow and the workflow canvas (on the right) an area for constructing a workflow.

In the Step box we will only see two steps, this is because we have only loaded the default Steps and not loaded
any of the external plugins that MAP can use.

Menu Bar

The Menu bar provides a selection of drop down menus for accessing the applications functions. The File menu
provides access to opening, importing, closing workspaces as well as quitting the application. The Edit menu
provides access to the undo/redo functionality. The Tools menu provides access to the Plugin Manager tool,
Physiome Model Repository (PMR) tool and the Annotation tool. The Help menu provides access to the about
box which contains information on contributors and the license that the MAP application is released under.

The ‘New’ menu has two sub-menus: ‘New/PMR Workflow’ and ‘New/Workflow’. The PMR Workflow menu
command will create a new workflow in the chosen directory and use Mercurial to track changes to your project.
When saving the workflow the contents of the project will be transferred to PMR via Mercurial, this transfer is
managed by the application. For more information on the benefits and use of PMR please read the documentation
available at read-the-docs .

The Workflow menu command will create a new workflow on your local disk in the selected directory.

Step Box

The Step box provides a selection of steps that are available to construct a workflow from. The first time we start
the program only the default plugins are available. To add more steps we can use the Plugin Manager tool. To use
a step in our workflow we drag the desired step from the step box onto the workflow canvas.

Workflow Canvas

The workflow canvas is where we construct and edit our workflow. We do this by adding the steps to the workflow
canvas from the step box that make up our workflow. We then make connections between the workflow steps to
define the complete workflow.

4.2. MAP Features Demonstration 125

http://abibook.readthedocs.org/en/latest/PMR/index.html

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

When a step is added to the workflow the icon which is visible in the Step box is augmented with visualisations
of the Steps ports and the steps configured status. The annotation of the steps ports will show when the mouse is
hovered over a port. The image below shows the Image Source step with the annotation for the port displayed.

Tools

MAP currently has three tools that may be used to aide the management of the workflow. They are the Plugin
Manager tool, the Physiome Model Repository (PMR) tool and the Annotation tool. For a description of each tool
see the relevant sections.

Plugin Manager Tool

The plugin tool is a simple tool that enables the user to add or remove additional plugin directories. MAP comes
with some default plugins which the user can decide to load or not by checking or unchecking the check box (1) at
the bottom of the dialog. External directories are added with the add directory button (2). Directories are removed
by selecting the required directory in the Plugin directories list (3) and clicking the remove directory button (4).
To reload plugins from the current plugin directories use the reload button (5).

Note: The reload will only reload the plugins from the current plugin directories, this will not include any changes
to the directories in the current dialog. To confirm changes and load plugins from the plugin directories listed in
the plugin manager click the OK button (6).

Whilst additions to the plugin path will be visible immediately in the Step box deletions will not be apparent until
the next time the MAP Client is started. This behaviour is a side-effect of the Python programming language.

126 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Physiome Model Repository (PMR) Tool

The PMR tool uses webservices and OAuth to communicate between itself (the consumer) and the PMR website
(the server). Using this tool we can search for and find suitable resources on PMR.

The PMR website uses OAuth to authenticate a consumer and determine consumer access privileges. Here we
will discuss the parts of OAuth that are relevant to getting you (the user) able to access resources on PMR. Please
read the section Simplified OAuth Primer for a quick overview of OAuth authentication.

If you want the PMR tool to have access to privileged information (your non-public workspaces stored on PMR)
you will need to register the PMR tool with the PMR website. We do this by clicking on the register link as shown
in the figure below. This does two things: it shows the Application Authorisation dialog; opens a webbrowser
at the PMR website. [If you are not logged on at the PMR website you will need to do so now to continue,
instructions on obtaining a PMR account are available here XXXXX]. On the PMR website you are asked to
either accept or deny access to the PMR tool. If you allow access then the website will display a temporary access
token that you will need to copy and paste into the Application Authorisation dialog so that the PMR tool can get
the permanent access token.

Simplified OAuth Primer

In OAuth we have three players the server, the consumer and the user. The server is providing a service that the
consumer wishes to use. It is up to the user to allow the consumer access to the servers resources and set the level
of access to the resource. For the the consumer to access privileged information of the user stored on the server
the user must register the consumer with the server, this is done by the user giving the consumer a temporary
access token. This temporary access token is then used by the consumer to finalise the transaction and acquire
a permanent access token. The user can deny the consumer access at anytime by logging into the server and
revoking the permanent access token.

Annotation Tool

4.2. MAP Features Demonstration 127

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Note: Please note that the annotation tool is currently under development, this tool in it’s current form as
documented here does not integrate well with the latest version of PMR. This version of the annotation tool has
been marked as deprecated

The Annotation tool is a very simple tool to help a user annotate the Workflow itself and the Step data directories
that are linked to PMR. At this stage there is a limited vocabulary that the Annotation tool knows about, but this
is intended to be extended in coming releases. The vocabulary that the annotation is aware of is available in the
three combo-boxes near the top of the dialog.

The main part of the Annotation tool shows the current annotation from the current target.

In the above image we can see the list of annotations that have been added to the current target. This is a simplified
view of the annotation with the prefix of the terms removed for clarity.

MAP Plugins

Section author: Hugh Sorby

The Plugin lies at the heart of the MAP framework. The key idea behind the plugins is to make them as simple as
possible to implement. The interface is defined in documentation and the plugin developer is expected to adhere
to it. The framework leaves the responsibility of conforming to the plugin interface up to the plugin developer.
The plugin framework is based on Marty Alchin’s [1] article on a plugin framework for Django. The plugin
framework is very lightweight and requires no external libraries and can be made to work with Python 2 and
Python 3 simultaneously.

Workflow Step

The Workflow Step is the basic item that a plugin developers need to place their software within. A workflow
step can be of any size and complexity. Although it must adhere to the plugin design to work properly with
the application. Every step that wishes to act like a Workflow Step must derive itself from the Workflow step
mountpoint. The Workflow step mountpoint is the interface between the application and the plugin. The Workflow
step mountpoint can be imported like so:

from mapclient.mountpoints.workflowstep import WorkflowStepMountPoint

A skeleton step is provided as a starting point for the developer to create their own workflow steps. The skeleton
step is actually a valid step in its own right and it will show up in the Step box if enabled. However the skeleton

128 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

step has no use other than as an item to drag around on the workflow area. The skeleton step is discussed below,
before that the plugin interface itself is discussed.

Plugin Interface

The plugin interface is the layer between the application and the developers plugin. The plugin interface is not
defined by contract as we so often see in Java. But rather the plugin interface is defined by documentation. This
puts the burden of the specification on the documentation and the conformity of the specification on the developer.
The underlying theory is that the developer is able to follow the specification without the application having to do
rigourous checks to make sure this is the case. The phrase ‘If it walks like a duck’ is often used.

In this section the specification of the Workflow step plugin interface is given. It is then upto the developer to
make sure their plugin behaves like one.

The details of the plugin interface are provided in the documentation of the source code in the relevant source
file and additionally here for easy reference. The documentation provided with the source code is very direct
with little explanation the following documentation provides a bit more explanation and discussion on the various
aspects of the plugin interface. The documentation provided here should be considered the slave documentation
and the documentation provided with the source code as the master documentation.

There are essentially, what may be considered, three different levels of the plugin design.

1. The Musts

2. The Shoulds

3. The Coulds

Creating a workflow step that satisifies the musts will create an actual workflow step that can be added to the
workflow area and interacted with. But it won’t be very useful. Satisfying the shoulds will usually be sufficient
for the very simplest of steps. Simple steps are for instance ones that provide images, or location information for
data. Doing some of the coulds will create a much more interesting step.

The requirements for creating a step have been kept as simple as possible, this is to allow the developer a quick
route into the development of the step content.

The following three sections discuss these three levels in more detail.

A Step Must

• The plugin must be derived from the WorkflowStepMountPoint class defined in the package map-
client.mountpoints.workflowstep

• Accept a single parameter in it’s __init__ method.

• Define a name for itself, this must be passed into the initialisation of the base class.

• Define the methods

def configure(self):
pass

def getIdentifier(self):
pass

def setIdentifier(self, identifier):
pass

def serialize(self, location):
pass

def deserialize(self, location):
pass

4.3. MAP Plugins 129

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

A Step Should

• Implement the configure method to configure the step. This is typically in the form of a dialog. When
implementing this function the class method self._configuredObserver() should be called to inform the
application that the step configuration has finished.

• Implement the getIdentifier/setIdentifier methods to return the identifier of the step.

• Implement the serialize/deserialize methods. The steps should serialize and deserialize from a file on disk
located at the given location.

• Define a class attribute _icon. That is of the type QtGui.QImage.

• Information about what the step uses and/or what it provides. This is achieved through defining ports on the
step.

A Step Could

• Implement the method ‘setPortData(self, index, dataIn)’ if it uses some information from another step.

• Implement the method ‘getPortData(self, index)’ if it was providing some information to another step.

• Implement the method ‘execute(self)’ If a step implements the ‘execute(self)’ method then it must call
‘_doneExecution()’ when the step is finished.

• Define a category using the ‘_category’ attribute. This attribute will add the step to the named category in
the step box, or it will create the named category if it is not present.

• Set a widget as the main widget for the MAP Client application. Calling ‘_setCurrentWidget(step_widget)’
with a widget passed as a parameter will set that widget to the main widget for the MAP Client application.
The widget will be removed when ‘_doneExecution()’ is called.

Pre-defined Step Attributes

A step has a number of pre-defined attributes with default values, they are:

• self._name = name

• self._location = location

• self._category = ‘General’

• self._ports = []

• self._icon = None

• self._configured = False

The ‘_name’ and ‘_location’ attributes are passed in to the ‘__init__’ method of the mount point. The ‘_category’
attribute can be used to group steps in the step box. By default a step has no ports and at least one port must be
defined before it can be used in a workflow. If the ‘_icon’ attribute is not defined then a default icon is supplied.
The ‘_configured’ property is set to False initially as most steps will not be configured in their initial state.

Pre-defined Step Methods

A step has a number of pre-defined methods, they are:

• execute(self) A method that gets called when execution passes to this step.

• getPortData(self, index) A method that returns the object that is defined by the port for the given index of
the step

• setPortData(self, index, dataIn) A method that sets the ports data for the given index.

130 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

• configure(self) A method called by the framework to inform the step that it needs to follow it’s configura-
tion procedure.

• isConfigured(self) A method to return the value of ‘_configued’. In most cases this method will not need
to be overridden.

• _configuredObserver A method to call to let the framework know that the step configuration has finished.

• _identifierOccursCount A method to call to determine the number of identifiers with the given value. This
method can be used to decide whether the current identifier is unique across the workflow.

• addPort Adds a port to the step, the port is defined using an RDF triple. See the Ports section for more
information.

• getName(self) Returns the ‘_name’ attribute if it is set otherwise returns the class name. In most cases this
method will not need to be overridden.

• deserialize(self, location) Must be implemented in the plugin otherwise an exception is raised.

• serialize(self, location) Must be implemented in the plugin otherwise an exception is raised.

• _setCurrentWidget(step_widget) Set widget ‘step_widget’ to the main widget for the framework.

• _doneExecution() Inform the framework that the step has finished it’s task.

• registerDoneExecution(self, observer) A method used by the framework to set the callable when execu-
tion is done. This method should not be overwritten.

• registerOnExecuteEntry(self, observer, undoRedoObserver) A method used by the framework to set a
callable to set up the step for execution. This method should not be overwritten.

• registerConfiguredObserver(self, observer) A method used by the framework to set a callable for noti-
fying when the step has been configured. This method should not be overwritten.

• registerIdentifierOccursCount A method used by the framework to set a callable for determining the
number of times the given identifier occurs in the current workflow. This method should not be over-
written.

Ports

A port is a device to specify what a workflow step provides or uses. A port is described using Resource Description
Framework (RDF) triples. The port description is used to determine whether or not two ports may be connected
together. One port can either use or provide one thing. A single port must not both provide a thing and use a thing.
Ports are ordered by entry position.

A port is defined with the subject of http://physiomeproject.org/workflow/1.0/rdf-schema#port and it can
be defined with a property or characteristic as either providing (http://physiomeproject.org/workflow/1.0/rdf-
schema#provides) or using (http://physiomeproject.org/workflow/1.0/rdf-schema#uses) an object. What that object
is is defined by the step, for example the image source step defines the following port:

(http://physiomeproject.org/workflow/1.0/rdf-schema#port, http://physiomeproject.org/workflow/1.
0/rdf-schema#provides, http://physiomeproject.org/workflow/1.0/rdf-schema#images)

Any step that understands the http://physiomeproject.org/workflow/1.0/rdf-schema#images object can define it’s
own port that uses this object. Ports are added to a step by using the ‘addPort(self, triple)’ method from the base
class.

Skeleton Step

The skeleton step satisfies the musts of the plugin interface. It is a minimal step and it is set out as follows.

A Python package with the step name is created, in this case ‘skeletonstep’, in the module file we add the code
that needs to be read when the plugins are loaded.

4.3. MAP Plugins 131

http://physiomeproject.org/workflow/1.0/rdf-schema#port
http://physiomeproject.org/workflow/1.0/rdf-schema#provides
http://physiomeproject.org/workflow/1.0/rdf-schema#provides
http://physiomeproject.org/workflow/1.0/rdf-schema#images

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

The module file performs four functions. It contains the version information and the authors name of the module.
For instance the skeleton step has a version of ‘0.1.0’ and authors name of ‘Xxxx Yyyyy’. It adds the current
directory into the Python path, this is done so that the steps python files know where they are in relation to the
python path. It also (optionally) prints out a message showing that the plugin has been loaded successfully. But the
most important function it performs is to call the python file that contains the class that derives from the workflow
step mountpoint.

The ‘SkeletonStep’ class in the skeletonstep.step package is a very simple class. It derives from the ‘Workflow-
StepMountPoint’, calls the base class with the name of the step, accepts a single parameter in it’s init method and
defines the five required functions to satisfy the plugin interface.

When enabled the skeleton step will be a fully functioning step in the MAP Client.

References

[1] http://martyalchin.com/2008/jan/10/simple-plugin-framework/ Marty Alchin on January 10, 2008

MAP Plugin Creator Wizard

Section author: Hugh Sorby

Note: MAP is currently under active development, and this document will be updated to reflect any changes to
the software or new features that are added. You can follow the development of MAP at the launchpad project.

The plugin lies at the heart of the MAP framework and the Plugin Creator Wizard creates skeleton plugins con-
forming to the MAP framework plugin interface. The Plugin Creator Wizard assists with the initial plugin creation
allowing the plugin developer to concentrate on implementing the plugins task. For basic familiararity with the
MAP Client please read the feature demonstration document MAP Features Demonstration.

For more detailed information on the plugin interface read the MAP Plugins document, this document defines the
plugin interface that the new plugin must adhere to.

The Plugin Creator Wizard takes the user through a series of pages/dialogs that user fills out as suits their needs.
The pages and a description about the elements in each page is given below. To move from one page to the next
use the ‘next’ button at the bottom of the page, for some pages the ‘next’ button is only available once the page
is complete. If the ‘next’ button is not available for a page it will be because at least one of the pages required
fields is incomplete. Required fields that are incomplete will be marked with a small cross icon (). Once all the
required fields are complete the ‘next’ button will become available, or the ‘finish’ button in the case of the last
page/dialog.

Introduction Page

The introduction page contains a short welcome message and a paragraph on the Plugin Creator Wizards purpose.

Identification Page

The identification page sets the name for the Workflow step, the Python package name and optionally the step
icon. The Workflow step name can be set in the text box (1). As a recommendation Workflow step names should
be defined in camel case as this name will be given to a class, spaces between words are acceptable however.
The Workflow step name is visible in the Step box when active in the application so a descriptive name will aide
users. The ‘cross’ icon (6) indicates that the entry for the step name is not valid. When a valid step name has been
entered in the text box the ‘cross’ icon will be removed. Examples of valid step names are: ‘Image Source’, ‘Point
Cloud Serializer’ and ‘Segmentation’.

132 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

http://martyalchin.com/2008/jan/10/simple-plugin-framework/
https://simtk.org/home/map
http://launchpad.net/mapclient

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 4.1: Figure: The introduction page.

The package name for the step will be automatically derived from the step name and set into the package name
text box (2). The wizard will make changes so that the package name conforms to the PEP8 guidelines for Python.
The wizard will also append the text ‘step’ to the package name. However if the default name is unsatisfactory
the package name can be edited directly and given an alternative name. The matching package names for the
examples given above would be: ‘imagesourcestep’, ‘pointcloudserializerstep’ and ‘segementationstep’.

An icon may be specified using the icon text box (3), the icon file may be chosen from the file system using the
file chooser button (4). When an icon is specified it will be copied into the created skeleton step and be made
available as a Qt resource. The suggested size of the icon is that it should be around 128px by 128px.

The step icon is an important part of the Workflow step as it is used to identify it graphically on the Workflow
canvas. The default icon displays the step name across the icon to help differentiate it from other steps with no
icon specified. A preview of the step icon (5) is shown so that you can see how it will look in the application.

Note: The PySide resource compiler application ‘pyside-rcc’ is required when choosing an icon image from the
file system

Note: When a ‘cross’ icon appears on any page of the wizard it is used to indicate that the current field is not
valid. When a field on a page is not valid the wizard cannot be progressed or finished. Therefore the ‘cross’ icon
also indicates which fields require modification before the wizard can be continued.

Ports Page

The ports page sets up the ports for the step. To add a port use the ‘Add’ button (1). This will create an entry in
the port list (2) with a default type of ‘provides’ and an empty object. A port can either provide or use a given
object. The object should be uniquely identified using a namespace prefix, for example ‘http://my.example.org/1.
0/workflowstep‘.

To remove a port, select an entry in the port list (2) and click the ‘Remove’ button (3).

4.4. MAP Plugin Creator Wizard 133

http://my.example.org/1.0/workflowstep
http://my.example.org/1.0/workflowstep

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 4.2: Figure: The identification page.

Fig. 4.3: Figure: The ports page.

134 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

For one port to be connected to any other the objects of both ports must match. The match is a determination of
object compatibility (currently this is just a simple string matching test). Additionally to this one port must be the
provider and the other the user (the order that the connection is made in when using the MAP Client is important).
In summary the second port must use the object that the first port provides.

Example

As an example imagine that I wish to define a port that uses images. The images object that my step uses is
particular class that I have defined. To create my port I would add a port using the ‘Add’ button [plugin wizard
ports (1)]. Then select the ‘uses’ type from the drop down combo box in the type column.

Fig. 4.4: Figure: Select the type of port using the drop down combo box.

Because my images class is of my own design I give it a unique name by prefixing it with a namespace. The
namespace I use is ‘http://my.example.org/1.0/workflowstep‘. So to finish defining my port for using images, in
the object column I enter the following text ‘http://my.example.org/1.0/workflowstep#images‘. The finished port
definition should look like this.

Fig. 4.5: Figure: An example port definition for using a users proprietary images object.

Configuration Page

The configuration page can help setup the configuration dialog for the step. The ‘Identifier’ check box (1) will
add standard code to the step to set up the getIdentifier/setIdentifier methods in the step, it will also add an entry
to the ‘ConfigurationDialog’ and validate the identifier. It is highly recommended that the ‘Identifier’ check box is
checked. Use the ‘Add’ button (2) to add a configuration parameter to the configuration list (3). The configuration
list has a ‘Label’ column (4), the value entered here will become a label on the configuration dialog. The ‘Default
Value’ column (5) will be used to set the default value for the corresponding label. Edit the values in this list
as appropriate. The ‘Remove’ button (6) can be used to delete the selected rows. The configuration parameters
entered will be used in generating a configuration dialog.

Note: The PySide ui compiler application ‘pyside-uic’ is required when using the wizard to generate a step which
has at least one configuration parameter.

Miscellaneous Page

The miscellaneous page sets a number of properties that are not important to the function of the step. The author
name(s) for the step can be set in the text box (1). The author’s name appears when the step plugin is loaded and is
not seen or used anywhere else. The category for the step can be set in the text box (2). The category determines
the group that the step appears in in the Step Box of the application.

4.4. MAP Plugin Creator Wizard 135

http://my.example.org/1.0/workflowstep
http://my.example.org/1.0/workflowstep#images

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Fig. 4.6: Figure: The configuration page.

Fig. 4.7: Figure: The miscellaneous page.

136 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Output Page

The output page sets the directory where the skeleton step will be generated. The output directory can be set in the
text box (1), or selected from the file system using the directory chooser button (2). The ‘cross’ icon (3) indicates
that the current directory entry is not a directory that can be written into. The output directory specified in (1)
must be an existing directory that you have the ability/permission to write to before the wizard can be successfully
finished.

Fig. 4.8: Figure: The output page.

Generation

When the wizard has been completed, the skeleton step will be generated in the chosen directory. To load the
skeleton step use the Plugin Manager to add the chosen directory into the list of plugin directories or use the
Reload button if the new skeleton step is in an existing plugin directory.

MAP Tutorial - Create Workflow

Section author: Hugh Sorby

Note: MAP is currently under active development, and this document will be updated to reflect any changes to
the software or new features that are added. You can follow the development of MAP at the launchpad project.

This document details takes the reader through the process of creating a workflow from existing MAP plugins.
Having a read through the MAP Features Demonstration is a good way to become familiar with the features of the
MAP application.

4.5. MAP Tutorial - Create Workflow 137

https://simtk.org/home/map
http://launchpad.net/mapclient

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Getting Started

To get started with MAP we need to create a new workflow. To do this we use File -> New -> Workflow menu
option (Ctrl-N shortcut). This option will present the user with a directory selection dialog. Use the dialog to
select a directory where the workflow can be saved. Once we have chosen a directory the step box and workflow
canvas will become enabled.

To create a meaningful workflow we will need to use some external plugins. To load these plugins we will use the
Plugin Manager tool. The Plugin Manager tool can be found under the Tools menu. Use the Plugin Manager to
add the directory location of the MAP plugins. After confirming the changes to the Plugin Manager you should
see a few new additions to the Step box.

Creating the Workflow

To create a workflow we use Drag ‘n’ Drop to drag steps from the Step box and drop the step onto the workflow
canvas. When steps are first dropped onto the canvas they show a red gear icon to indicate that the step is not
configured. At a minimum a step requires an identifier to be set before it can be used.

Drag the steps Image Source, Data Store and Automatic Segmenter onto the workflow canvas. All the steps will
show a red gear, except the ‘Automatic Segmenter’ step, this red gear icon indicates that the step needs to be
configured. To configure a step we can either right click on the step to bring up a context menu from which the
configure action can be chosen or simply click the red gear directly. See the relevant section for the configuration
of a particular step.

Note: When configuring a step you are asked to set an identifier. The identifier you set must unique within the
workflow and it must not start with a ‘.’.

Configuring the Image Source Step

The image source step requires a unique identifier for the step to be set. It also requires either a location on the
local disk where the image data is located or a PMR workspace url from which the image data may be downloaded.
Here we will show how to configure the Image Source step with images that have been stored in a workspace on
PMR.

This step requires a unique id to be manually set. The id is used to create a file containing the step configuration
information. This id for the Image Source step is also used to create a default directory under the workflow project
directory if required. Once a valid identifier is entered the red highlight around the edit box will disappear.

This step configuration makes use of the PMR search widget which gives us the ability to search available
workspaces on PMR. In the image source step configuration dialog seen in Figure 1 we can see that there is a
place to set a unique identifier for the step and also two tabs, one tab is for setting the image dataset location on
the local disk and the other tab is for searching PMR workspaces for image data. We will leave the local disk edit
box on the local file system tab empty and allow the configuration to set the default location for us.

Fig. 4.9: Figure 1: Image source step configuration dialog.

138 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Set the identifer edit box to bv_images and select the Physiome Model Repository tab so that we can search PMR
for our images. On this tab we see We are going to conduct an ontological term [2] search for our images, we are
looking for some images that show an anyeurism in the anterior communicating artery. To do this we can start
entering the text anterior communicating artery into the search term edit box [3], when we pause in our typing
the dialog will query the PMR OWL terms for suitable matches. We will see results similar to what is shown in
Figure 3, we can click on the matching term in this list and the correct reference will be added to the search term
edit box [3] for us.

Fig. 4.10: Figure 2: PMR search tab, [1] Workspace url, [2] Search type combobox, [3] Search term, [4] Search
button, [5] Search results.

Fig. 4.11: Figure 3: PMR OWL terms.

With the correct term in place we can click the search button to return matching results from PMR. We will get
back a single result Blood Vessel in MR Images. When we select this result in the search results list [5] the url for
the workspace will be loaded into the workspace url edit box [1]. We should now have the dialog looking similar
to Figure 4.

Fig. 4.12: Figure 4: Completed Physiome Model Repository search tab.

This completes the configuration of the image source step. When we click Ok in the dialog the images will be
downloaded to the default directory on our local disk.

We can also use the combobox at the bottom of the dialog (Figure 1) to set the image type however this is only
necessary if the image type cannot be determined through the filename extension. In our case we can leave this as
it is.

MAP is not setup to work with streamed resources so we must download the workspace from PMR to our local
disk.

Configuring the Point Cloud Step

Configuring the Point Cloud step is trivial at this time. This is because the step only requires an identifier to be
set. The identifier will be used to create a directory where the received point cloud will be serialized.

4.5. MAP Tutorial - Create Workflow 139

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Executing the Workflow

At this point you should have a workflow area looking like this:

Once the All the steps in the workflow are configured (i.e. no more red gear icons) we can make connections
between the steps. To make a connection between two steps the first step must provide what the second step uses.
When trying to connect two steps that cannot be connected you will see a no entry icon over the connection for a
short period of time and then the connection will be removed. The following image shows an incorrect connection
trying to be made.

If the mouse is hovered over a port you will see a description of what the port provides or uses. To make a
connection click on a port and drag the mouse to the port to be connected.

To execute the workflow we need to connect up the steps in the correct manner and save the workflow. The
workflow should be connected up as can be seen in the following image.

Once the workflow has been saved the execute button in the lower left corner should become enabled. Clicking
the execute button will, naturally enough, execute the workflow step by step.

Note: We can make connections between steps at anytime not just when all steps have been properly configured.

Automatic Segmenter Step

The ‘Automatic Segmenter’ actually allows us to interact with executing workflow. With this step we can move
the image plane up and down and change the visibility of the graphical items in the scene. The image plane is
moved through the use of the slider on the left hand side. The visibility of the graphical items is controlled by
checking or unchecking the relevant check boxes. To continue execution of the workflow click the Done button in
the lower right hand corner.

140 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

MAP Tutorial - Create Plugin

Section author: Hugh Sorby

Note: MAP is currently under active development, and this document will be updated to reflect any changes to
the software or new features that are added. You can follow the development of MAP at the launchpad project.

This document details takes the reader through the process of creating a new plugin for the MAP Client. The MAP
Plugins document defines the plugin interface that the new plugin must adhere to.

A Simple Source Step Example

In this example we will create a source step for supplying Zinc model files. There are six steps we will need to
complete, and they are:

1. Modifying the Skeleton Step

2. Creating an Icon

3. Defining the Port

4. Identification

5. Serialization

6. Configuration

Modifying the Skeleton Step

We could start from scratch and create everything but our task is made a little easier by the presence of the skeleton
step. The skeleton step is a step in it’s own right, but it is not useful. Our task here is to take the skeleton step and
rename it to provide the starting point for our new step.

To start with copy the skeletonstep directory to another directory. To make this step our own we change all
occurrences of the skeletonstep name to zincmodelsourcestep. The places we have to change are:

1. The topmost directory name

2. The inner directory name, this directory is used to namespace our new step.

4.6. MAP Tutorial - Create Plugin 141

https://simtk.org/home/map
http://launchpad.net/mapclient

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

3. In __init__.py file in the topmost directory, we also need to uncomment the lines:

from zincmodelsourcestep import step
print("Plugin '{0}' version {1} by {2} loaded".format(tail, __version__, __
→˓author__))

4. In __init__.py file in the inner directory. We have to change the name of the class to ‘ZincModelSourceStep’
and change the name of the step to ‘Zinc Model Source’.

I will refer to the topmost directory as the ‘step root’ directory for the remainder of this example.

Creating an Icon

Creating an icon is optional as a default icon is provided, however it is nice to see your own icona and visually
differentiate it from the other steps in the framework.

The are an all many of ways to create an icon to represent our step in the MAP application. So I will leave this as
an exercise for the reader.

For the purposes of this example I created the icon below using the Gimp image manipulation program and it is
available here.

We can use Qt’s designer application to create a resource file from which we can generate a Python resource
file. The creation of a resource file in Qt designer is out of the scope of this example but there are numerous
demonstrations of how to do this available on the web.

Once the resources file has been created we can generate the Python version of this file like so:

pyside-rcc -py3 -o resources_rc.py qt/resources.qrc

A few things to note:

1. the current working directory is assumed to be ‘<step root>/zincmodelsourcestep/widgets’ (and it exists).

2. the qt specific files are saved in a directory called ‘qt’, which is a subdirectory of the current working
directory.

3. ‘resources_rc’ is the default resource file name used by the Python ui compiler, in this particular situation
it is not important but just easier to name the generated resource file as the Python ui compiler expects for
situations when the resources are needed by the user interface.

4. the use of the -py3 flag, when creating image resources the presence or lack thereof doesn’t make much
difference at the end of the day but maintaining compatibility with both Python 2 and Python 3 is desirable.

Defining the Port

To make our step useful we need to make it provide/use information for/from another step. To do this we define
a port for the step. The port is described using Resource Description Framework (RDF) triples. The MAP appli-
cation defines the terms ‘http://physiomeproject.org/workflow/1.0/rdf-schema#port‘, ‘ http://physiomeproject.org/
workflow/1.0/rdf-schema#provides‘ and ‘http://physiomeproject.org/workflow/1.0/rdf-schema#uses‘ among oth-
ers. We can use to these terms to interchange information about the port we will create, for this example we are
interchanging information between the plugin and the application. Further we can add this information into the
semantic web so that others may search for and utilise it. While adding information about our step and it’s ports
into the semantic web is outside of the scope of the current example, it is important to understand the other ways
in which we might inform other users and developers of our work.

142 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

http://physiomeproject.org/workflow/1.0/rdf-schema#port
http://physiomeproject.org/workflow/1.0/rdf-schema#provides
http://physiomeproject.org/workflow/1.0/rdf-schema#provides
http://physiomeproject.org/workflow/1.0/rdf-schema#uses

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

If we define the term ‘http://physiomeproject.org/workflow/1.0/rdf-schema#zincmodeldata‘ to define our Zinc
model data object. The tacit knowledge we take from this definition is that it is a class derived from a Python
object class with three attributes:

1. _identifier

2. _elementLocation

3. _nodeLocation

Furthermore the _elementLocation will identify a file resource that defines the elements (and the nodes if _node-
Location is empty) for the model and the _nodeLocation will identify a file resource that defines the nodes for the
model. The class also has access methods ‘elementFile()’ and ‘nodeFile()’ which return a Python string holding
the values of the respective attributes. The Python representation of this definition is given by the ZincModelData
class:

class ZincModelData(object):

def __init__(self):
self._identifier = ''
self._elementLocation = ''
self._nodeLocation = ''

def elementFile(self):
return self._elementLocation

def nodeFile(self):
return self._nodeLocation

Identification

The step needs to be identified, among other things it determines where we deserialise and serialise to as well as
being helpful for annotations. For this example we could simply supply a randomly generated identifier but we
will allow the user to define one. The identifier can be used by the serialization/deserialization methods to store
the step state in a file. Using the step identifier assures the developer that no-one else will write to that file. This
enforces a requirement onto the identifier to be unique within a workflow.

Serialization

Serialization is the process of translating the object state into a format that can be stored (for example in a file)
and later used to reinstate the object to how it was when the serialization took place. The exact how of the step
serialization is up to the step author to decide, the following is just one way to approach this issue. The state of
our step is stored within the ZincModelData object so we need to be able to serialize and deserialize this class. We
will use the QSettings class from the Qt framework to do the serialization and deserialization for us. In the Step
class we add the following two methods:

def serialize(self, location):
configuration_file = os.path.join(location, getConfigFilename(self._state._

→˓identifier))
s = QtCore.QSettings(configuration_file, QtCore.QSettings.IniFormat)
s.beginGroup('state')
s.setValue('identifier', self._state._identifier)
s.setValue('element', self._state._elementLocation)
s.setValue('node', self._state._nodeLocation)
s.endGroup()

def deserialize(self, location):
configuration_file = os.path.join(location, getConfigFilename(self._state._

→˓identifier))
s = QtCore.QSettings(configuration_file, QtCore.QSettings.IniFormat)
s.beginGroup('state')

4.6. MAP Tutorial - Create Plugin 143

http://physiomeproject.org/workflow/1.0/rdf-schema#zincmodeldata

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

self._state._identifier = s.value('identifier', '')
self._state._elementLocation = s.value('element', '')
self._state._nodeLocation = s.value('node', '')
s.endGroup()

The ‘location’ parameter that is passed into these two methods is the location of the project directory. The serial-
ization and deserialization write to a file in this directory using the step identifier as the part of the filename. In
this way with the step identifier being unique within the workflow the serialization process won’t overwrite (or get
overwritten by) another serialization process.

Configuration

Next we need to enable the user to be able to configure the step. To do this we can use qt-designer to create a
‘configuredialog.ui’ file that we can convert into Python code using ‘pyside-uic’. We want the configuredialog.ui
to look like this:

The Qt designer .ui file for this dialog can be found here. As it can be seen in the figure above we allow the user
to set an identifier for the step and define the location of the element and node file that define the Zinc model. To
generate the Python code from the .ui file execute the following command:

pyside-uic --from-imports -o ui_configuredialog.py qt/configuredialog.ui

Similarly for creating the resources there a couple of things to note:

1. the current working directory is assumed to be ‘<step root>/zincmodelsourcestep/widgets’ (and it exists).

2. the .ui file is saved in a directory called ‘qt’, which is a subdirectory of the current working directory.

3. the use of the –from-imports flag for Python 3 compatibility.

Having created the user interface part of the configuration dialog we need to add the Python code to handle the
user interaction. We will use composition of the user interface code rather than multiple-inheritance to combine
the user interface code with the user interaction code. Create a Python module ‘configuredialog’ in the ‘zincmod-
elsourcestep/widgets’ package. In this module create a class that derives from QtGui.QDialog and sets up the user
interface in the __init__ method. The code should look like this:

from PySide.QtGui import QDialog

from zincmodelsourcestep.widgets.ui_configuredialog import Ui_ConfigureDialog

class ConfigureDialog(QDialog):
'''
Configure dialog to present the user with the options to configure this step.
'''

144 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

def __init__(self, state, parent=None):
'''
Constructor
'''
QDialog.__init__(self, parent)
self._ui = Ui_ConfigureDialog()
self._ui.setupUi(self)

It can be seen in this code snippet that I am passing in an object using the label ‘state’ into the constructor of my
ConfigureDialog class. This object is used to represent the state of the ConfigureDialog object for the purposes of
serialization and validation. This object is defined in another Python module called ‘zincmodeldata’ and contains
a class named ‘ZincModelData’ that has three attributes:

1. _identifier

2. _elementLocation

3. _nodeLocation

This class is used by and returned from two public methods of the ConfigureDialog class setState and getState.
These two methods set the state and get the state of the corresponding user interface elements accordingly. The
implementation of these two methods look like this:

def setState(self, state):
self._ui.identifierLineEdit.setText(state._identifier)
self._ui.elementLineEdit.setText(state._elementLocation)
self._ui.nodeLineEdit.setText(state._nodeLocation)

def getState(self):
state = ZincModelData()
state._identifier = self._ui.identifierLineEdit.text()
state._elementLocation = self._ui.elementLineEdit.text()
state._nodeLocation = self._ui.nodeLineEdit.text()

return state

The ConfigureDialog class is also going to help us validate the step configuration. When we have a valid step we
can execute the workflow that uses the step. So when validating our step we need to ensure that it has everything
required for successful execution. In this case, the requirements are an existing element file. A node file isn’t
strictly necessary as it may be incorporated into the element file.

With this in mind we define the ‘validate’ method of the ConfigureDialog class to return True when we have the
location of an existing exelem file and False otherwise. It is also important to document the condition(s) under
which the step is considered valid so that other uses understand the expected behaviour. The ‘validate’ method
should look like this:

def validate(self):
element_filename = self._ui.elementLineEdit.text()
element_valid = len(element_filename) > 0 and os.path.exists(element_filename)

self._ui.buttonBox.button(QDialogButtonBox.Ok).setEnabled(element_valid)

return element_valid

By manipulating the state of the ‘Ok’ button we know that the step is valid when returning from the dialog when
the ‘Ok’ button has been activated.

As far as the ConfigureDialog is concerned all it requires is for the connections between the widget signals and
class methods to be defined. To make the required connections we can create a method called ‘_makeConnections’
which we can call from the constructor and add three supporting methods for handling the responses to user
actions. Here is the code we need to add:

4.6. MAP Tutorial - Create Plugin 145

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

def _makeConnections(self):
self._ui.elementButton.clicked.connect(self._elementButtonClicked)
self._ui.nodeButton.clicked.connect(self._nodeButtonClicked)
self._ui.elementLineEdit.textChanged.connect(self.validate)

def _lineEditFile(self, line_edit):
(fileName, _) = QFileDialog.getOpenFileName(self, 'Select Zinc File')

if fileName:
location = os.path.basename(fileName)
line_edit.setText(fileName)

self.validate()

def _elementButtonClicked(self):
self._lineEditFile(self._ui.elementLineEdit)

def _nodeButtonClicked(self):
self._lineEditFile(self._ui.nodeLineEdit)

There are a number of niceties that we have not added into this example code that we could have. We have also
not added any checks to make sure the file selected is an exelem file. But this fits in with the approach where we
consider that TUINAI.

Glossary

Python The Python interpreter

Mercurial Distributed version control system.

Appendix A - Generating html documentation

This appendix covers how to generate html files from the ReStructured text documentation source files. The
documentation is generated using the Sphinx documentation tool. Sphinx is a tool that makes it easy to create
intelligent and beautiful documentation.

Generating the documentation is very easy. First you need to download and install Sphinx if you don’t already
have it. Then you use the command line to run the sphinx build tool, which will generate the documentation in the
target format.

There are two ways of generating the documentation. You can either use the supplied Makefile in the resources
directory or you can use ‘sphinx-build’ directly. The Makefile is setup to use specific locations, but these location
can be overridden when invoking the make command. The ‘sphinx-build’ application requires the source directory,
the build directory, the configuration directory and the documentation target format to be supplied on the command
line.

The commands for these two methods of generating the documentation are given here:

Method 1.
make -f docs/resources/Sphinx.Makefile html

Method 2.
sphinx-build -t html -c docs/resources docs build

note:

• This assumes your current working directory is the parent of the ‘docs’ directory

• If a directory ‘build’ doesn’t exist in the current directory it will be created

146 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

That’s it! Now you can use your favourite webbrowser to read the documentation. The ‘index.html’ file for method
1. is located in ‘build/html’ and for method 2. it is available in ‘build’.

4.8. Appendix A - Generating html documentation 147

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

148 Chapter 4. Musculoskeletal Atlas Project (MAP) Client

CHAPTER 5

Glossary

Clone Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in
order to have a local copy of a repository to work in.

Embedded workspace

Embedded workspaces A Mercurial concept that allows workspaces to be nested within other workspaces.

Exposure

Exposures A publicly available page that provides access to and information about a specific revision of a
workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s)
contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed.
CellML files for example are presented with options such as code generation and mathematics display,
whereas FieldML models might offer a 3D view of the mesh.

Fork A copy of the workspace which includes all the original version history, but is owned by the user who
created the fork.

Mercurial Mercurial is a distributed version control system, used by the Physiome Model Repository software
to maintain a history of changes to files in workspaces. See a tour of the Mercurial basics for some good
introductory material.

Pull

Pulling The term used with distributed version control systems for the action of pulling changes from one clone
of the repository into another. With PMR, this usually implies pulling from a workspace in the model
repository into a clone of the workspace on your local machine.

Push

Pushing The term used with distibuted version control systems for the action of pushing changes from one clone
of the repository into another. With PMR, this usually implies pushing from a workspace clone on your local
machine back to the workspace in the model repository, but could be into any other clone of the workspace.
See a tour of the Mercurial basics for some good introductory material.

Python Python is a programming language that lets you work more quickly and integrate your systems more
effectively. See http://python.org for all the details.

Synchronize Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

Workspace

149

http://mercurial.selenic.com/
http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html
http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html
http://python.org

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

Workspaces A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or
directory in which files are stored, with the added feature of being version controlled by the distributed
version control system called Mercurial.

150 Chapter 5. Glossary

http://mercurial.selenic.com/

CHAPTER 6

Tutorial to do list

General

Todo

• Add many more references (.. _like-this:) to docs for cross-referencing.

• make sure all references to the staging instance are updated to teaching.physiomeproject.org

Within sections

Todo

This section needs more work.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-
xy2345/checkouts/latest/PMR2/embeddedworkspaces.rst, line 9.)

Todo

• Update all documentation to reflect workspace ID changes and user workspace changes, if they go ahead.

• Get embedded workspaces doc written.

• Get some best practice docs written.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-
xy2345/checkouts/latest/PMR2/index.rst, line 36.)

Todo

These images need to be updated if there is time.

151

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-
xy2345/checkouts/latest/opencor-tutorials/newWork.rst, line 66.)

Todo

• Add many more references (.. _like-this:) to docs for cross-referencing.

• make sure all references to the staging instance are updated to teaching.physiomeproject.org

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-
xy2345/checkouts/latest/todoList.rst, line 10.)

152 Chapter 6. Tutorial to do list

CHAPTER 7

MAP Client Documentation

The documentation for MAP Client.

153

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

154 Chapter 7. MAP Client Documentation

CHAPTER 8

The MAP Client

This section of the tutorial covers the MAP Client.

155

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

156 Chapter 8. The MAP Client

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

157

VPH 2014 ABI Software Tutorial, Release 0.1-@VPH2014

158 Chapter 9. Indices and tables

Index

A
Auckland Physiome Repository web interface, 44

C
Clone, 83, 92, 149

E
Embedded workspace, 83, 92, 149
Embedded workspaces, 83, 92, 149
Exposure, 83, 92, 149
Exposures, 83, 92, 149

F
Fork, 83, 92, 149

M
Mercurial, 83, 92, 146, 149

P
PMR2, 83
Pull, 84, 92, 149
Pulling, 84, 92, 149
Push, 84, 92, 149
Pushing, 84, 93, 149
Python, 84, 93, 146, 149

S
Synchronize, 84, 93, 149

W
Workspace, 84, 93, 149
Workspaces, 84, 93, 150

159

	VPH 2014 - ABI Software Tutorial
	Auckland Physiome Repository
	OpenCOR
	Musculoskeletal Atlas Project (MAP) Client
	Glossary
	Tutorial to do list
	MAP Client Documentation
	The MAP Client
	Indices and tables

