

VPH 2014 - ABI Software Tutorial

This documentation has been prepared for the session, "VPH tools from the Auckland Bioengineering Institute", presented at the VPH 2014 [http://www.ntnu.edu/vph2014/] meeting.

This tutorial will demonstrate some of the tools, techniques and best practices developed at the Auckland Bioenginerring Institute [http://www.abi.auckland.ac.nz] that aid scientists in the development and application of computational models and simulation experiments in their work toward the creation of a virtual physiological human. The Auckland Physiome Repository provides a framework for the storage, curation and exchange of data. By using standards suitable to their data, scientists maximise their ability to reuse existing knowledge and enable others to make use of their achievements in novel work. Annotations ensure scientists are able to find existing data and are also able to correctly interpret and apply their own data. These tutorials are designed to help demonstrate and promote practices which will aid attendees in their own work. Attendees are encouraged to raise issues specifically related to their needs with the tutors.

Documentation for the software used in this tutorial is available online [http://vph2014-abi-tutorial.readthedocs.org/], including the most recent version of the tutorial itself [http://vph2014-abi-tutorial.readthedocs.org/en/latest/tutorialOverview.html]. This tutorial guides the particpant through various common computational modelling scenarios faced by scientists working toward the virtual physiologial human. We use these scenarios to achieve scientific outputs using the covered tools and demonstrating practices we believe will help ensure reproducible and reusable science.

When interacting directly with Mercurial, this tutorial demonstrates how to work with the repository using TortoiseHg [http://tortoisehg.bitbucket.org/], which provides a Windows explorer integrated system for working with Mercurial repositories.

Note

Brief mention of the equivalent command line versions of the TortoiseHg
actions will also be mentioned, so that these ideas can also be used without
a graphical client, and on Linux or OS X and similar systems. These will be denoted
by boxes like this.

This tutorial requires you to have:

	A Mercurial client such as TortoiseHg [http://tortoisehg.bitbucket.org/] or Mercurial [http://mercurial.selenic.com/] installed;

	The OpenCOR CellML modelling environment and/or the MAP workflow tool installed; and

	Possibly a text editor such as Notepad++ [http://notepad-plus-plus.org/] or gedit [http://projects.gnome.org/gedit/].

The tutorial makes use of two primary tools, OpenCOR and MAP Client, as well as the model repository. For convenience, documentation for each of these projects has been collated here, corresponding to the versions of the tools used in the tutorial.

Contents:

	VPH 2014 - ABI Software Tutorial

	Auckland Physiome Repository

	OpenCOR

	Musculoskeletal Atlas Project (MAP) Client

	Glossary

	Tutorial to do list

Indices and tables

	Index

	Module Index

	Search Page

VPH 2014 - ABI Software Tutorial

This tutorial consists of two independent components that can be worked through in any order. One is the OpenCOR tutorial, which focuses on working with CellML models. The other is the MAP Client workflow tool focussing on moving data through a series of processing steps. Both of these are able to make use of the Auckland Physiome Repository to locate, archive, and share data.

Note

The teaching instance of the repository is a mirror of the main
repository site found at http://models.physiomeproject.org/,
running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not
permanent, and will be overwritten with the contents of the main
repository whenever the teaching instance is upgraded to a new
release of PMR2. For this reason, you can feel free to experiment
and make mistakes when pushing to the teaching instance. Please
subscribe to the cellml-discussion [http://lists.cellml.org/mailman/listinfo] mailing list to receive
notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for
instructions on how to migrate any content from the teaching instance
to the main (permanent) Auckland Physiome Repository.

Tutorial outline

	OpenCOR
	A new CellML-based piece of work
	Create a new workspace

	Populate with content

	Annotating the model

	Commit changes

	Push back to the repository

	Making use of annotations

	Reproducing model behaviour in OpenCOR
	Cloning an existing workspace

	Check the model

	Revert to an earlier version of the model

	Extending an existing CellML model
	Forking an existing workspace

	Cloning your forked workspace

	Quietening the self excitation

	Adding an electrical stimulation protocol

	MAP Client
	Setting Up Pre-requisite Software
	Dependencies

	Automatic segmentation of a three-dimensional image stack
	Import Workflow from PMR

	Blood Vessel Automatic Segmentation Workflow

	Execute the Workflow

	Execution

	Check Output

	Manually digitising an image stack

	Preliminary CellML simulation step

	Creating your own step

OpenCOR

In this part of the tutorial, we take you through a few common scenarios that a modeller might want encounter in their daily work, showing how to complete the required tasks using OpenCOR and the model repository.

	A new CellML-based piece of work
	Create a new workspace

	Populate with content

	Annotating the model

	Commit changes

	Push back to the repository

	Making use of annotations

	Reproducing model behaviour in OpenCOR
	Cloning an existing workspace

	Check the model

	Revert to an earlier version of the model

	Extending an existing CellML model
	Forking an existing workspace

	Cloning your forked workspace

	Quietening the self excitation

	Adding an electrical stimulation protocol

 In the Auckland Physiome Repository, a complete piece of work is stored in a workspace. Each workspace is a Mercurial repository, which allows the repository to maintain a complete history of all changes made to every file it contains. In this part of the tutorial, we take you through the creation of a new piece of work, which will be stored in a workspace. Useful information on working with the repository using Mercurial is available in the repository documentation.

A new CellML-based piece of work

In this section we are going to create a new workspace into which we will add a CellML model, annotate the model using OpenCOR, and simulate the model to check that it produces the expected results. We will be using the seminal Noble (1962) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/] cardiac cellular electrophysiology model as the demonstration model for this part of the tutorial.

Create a new workspace

You can find instructions for creating a new workspace on the teaching instance [http://teaching.physiomeproject.org] repository in the repository workspaces documentation. Following those instructions, create a workspace similar to that shown below:

[image: ../_images/newWorkspace.png]
Creating a new workspace to begin a scientific study based on the Noble 1962 cardiac cellular electrophysiology model.

Once you have created the workspace, you will be taken to the workspace listing page. Take particular note of the URI for mercurial clone/pull/push, also the same as the current page URL.

[image: ../_images/emptyWorkspace.png]
A view of the newly created and empty workspace. Note: the workspace URI is unique to every workspace, so yours will be different to the one shown above.

In order to make changes to your workspace, you have to clone it to your own computer. In order to do this, copy the URI for mercurial clone/pull/push as shown above. In Windows explorer, find the folder where you want to create the clone of the workspace. Then, right click to bring up the context menu, and select TortoiseHG ‣ Clone as shown below:

[image: ../_images/PMR-tut1-tortoisehgclone.png]

Paste the copied URL into the Source: area and then click the Clone button. This will create a folder named after the workspace identifier (a hexadecimal number) that will be empty. The folder will be created inside the folder in which you instigated the clone command.

Command line equivalent

hg clone [URI]

The repository will be cloned within the current directory of your command line window.

You will need to enter your username and password to clone the workspace, as the workspace will be set to private when it is created.

Populate with content

We have prepared a copy of the Noble (1962) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/] model encoded in CellML ready for your use. You can download the model n62.cellml and save it into your cloned workspace folder created above. To verify that the model works, you can load it into the OpenCOR Single Cell view and simulate the model for 5000 ms. You can plot the variable V in the membrane component and you should see results as shown below:

[image: ../_images/n62-initial-results.png]
The arrows highlight the Ending point which should be set to 5000 ms, the [image: media-playback-start] button to run the simulation, and the variable V to be plotted.

Todo

These images need to be updated if there is time.

As long as your results look similar to the above, everything is working as expected. Now is a good time to add the CellML model to the workspace record. The first step is to choose the TortoiseHG ‣ Add Files... option from the context menu for your workspace folder (1).

[image: ../_images/addModel-1.png]

This will bring up the hg add dialog box, showing the files which can be added (in this case, only the n62.cellml file is available and it is selected by default). Clicking the Add button (2) will inform Mercurial that you want to add the selected file to the workspace.

[image: ../_images/addModel-2.png]

In Windows Explorer, you will see the file icon for the n62.cellml model now overlaid with the Mercurial + icon (3) to indicate that you have added the file, but not yet committed it to the workspace.

[image: ../_images/addModel-3.png]

You can now commit the added file to the workspace by choosing Hg Commit... from the context menu in your workspace folder (4).

[image: ../_images/addModel-4.png]

This will bring up the commit dialog, which lets you explore and select all the possible changes in this workspace that you can commit. In this case, there is just the addition of the n62.cellml file to be committed. Before committing, a useful log message should be entered - this will help you keep track of the changes you make to the workspace and possibly the reasons for why a given set of changes were made (for example, due to feedback from reviewers). After entering the log message, click the Commit button to commit the changes (5). The dialog will stay visible in case you have further changes to commit, but in this case you can just close the dialog.

[image: ../_images/addModel-5.png]

Once you have successfully committed the change, you will see that the icon for the n62.cellml file has now changed to a green tick (6) to indicate that the file is up-to-date with no modifications.

[image: ../_images/addModel-6.png]

Command line equivalent

hg add n62.cellml
hg commit -m "Adding an initial copy of the Noble (1962) cardiac cellular electrophysiology model to the workspace."

Annotating the model

While we have the model open in OpenCOR, we should have a go at annotating some of the objects in the model. Full instructions for this can be found in the OpenCOR CellML Annotation view. First, we will follow the example given in those instructions for annotating the sodium_channel component.

The first step is to switch to the Editing mode (1) (make sure that the CellML Annotation view is selected) and select the sodium_channel component for annotation (2). We will be using the bio:isVersionOf as the qualifier for this annotation (3) and searching for terms related to sodium channel (4).

[image: ../_images/INa-annotation-step1.png]

We can then add desireable terms from the search results by choosing the [image: list-add] button beside the term to add to the annotations for the sodium_channel component (5).

[image: ../_images/INa-annotation-step2.png]

Have a play annotating other variables and components in the model. When done annotating, make sure to save the model (File ‣ Save). With the CellML model updated, now is a good time to commit the changes to the workspace.

Commit changes

As above, choose Hg Commit... from the context menu in your workspace folder to bring up the Mercurial commit dialog. This time, you will see that there is one file modified that can be committed, n62.cellml (1). As we mentioned previously, it is important to enter a good log message to keep a record of the changes you make (2), and the changes made to the currently selected file are shown to help remind you as to your changes (3). In this case, OpenCOR has made many changes to the whitespace in the file, as well as adding the RDF annotations at the bottom of the file.

[image: ../_images/commitAnnotations.png]

Command line equivalent

hg diff
hg commit -m "Using OpenCOR to add some annotations to my copy of the Noble 1962 model."

Push back to the repository

Having added content and performed some modifications, it is time to push the changes back to the model repository, achieved in TortoiseHG with the synchronization action. First, select TortoiseHG ‣ Synchronize from the context menu for your workspace folder.

[image: ../_images/synchronize-1.png]

This will bring up the TortoiseHG Sync dialog. In this dialog, you will see that by default you will be synchronizing with the workspace on the teaching repository from which you originally created this clone. This is usually what you want to do, but it is possible to synchronize with other Mercurial repositories. In this case, we want to push the changes we have made to the model repository, so choose the corresponding action from the toolbar (highlighted below).

[image: ../_images/synchronize-2.png]

Once you choose the push action, you will be asked to confirm that you want to push to your remote repository and then asked for your username and password (these are the credentials you created when registering for an account in the model repository). You will then see a listing of the transaction as your changes are pushed to the repository and a message stating the push has completed.

Command line equivalent

hg push

If you now return to browsing your workspace in your web browser, and refresh the page, you will see that your workspace now has some content - n62.cellml - and if you view the workspace history, you will see the log messages that you entered when committing your changes above.

[image: ../_images/updatedWorkspace.png]

Now might be a good time to think about sharing your workspace with your neighbours. You might also want to have a look at creating an exposure for your workspace. To learn how to create exposures, please refer to Creating CellML exposures.

Making use of annotations

Recent additions to PMR2 have focussed on working with semantic metadata. In this part of the tutorial we will demonstrate how to take the annotated Noble (1962) model from the previous tutorial and index it in the repository's semantic knowledgebase for later retrival.

In the previous tutorial, you annotated your copy of the Noble (1962) model and pushed it up to the teaching instance [http://teaching.physiomeproject.org] repository. If you now visit your workspace URL and navigate to the RDF Indexing tab (1), you will see that the n62.cellml is the only resource avaiable to be indexed (2).

[image: ../_images/annotation01.png]

Moving the n62.cellml file over to the box on the right indicates that it should be indexed (3) and selecting the Apply Changes and Export to RDF Store button (4) will apply the change and index the RDF obtained from the CellML document.

[image: ../_images/annotation02.png]

As long as everything is successful, you'll end up with a page similar to that shown below, and future revisions of the n62.cellml file will automatically be indexed in the RDF store.

[image: ../_images/annotation03.png]

Now that your model is indexed, lets try to find it. You can navigate to the Ontology based search engine from the front page of the teaching instance [http://teaching.physiomeproject.org].

[image: ../_images/annotation04.png]

In the search text field, you can begin typing the label of one of the terms you added to your copy of the Noble (1962) model. In this example, we used the term voltage-gated sodium channel complex. As you type the auto-complete will kick in and you'll start to see suggested terms. As you refine your query the list will decrease and you will hopefully see one you remember entering.

[image: ../_images/annotation05.png]

Once you choose the desired term, you can click the Search button to exectute the search. Assuming you selected an ontology term that you used (or which someone else has used in another workspace) you should see your copy of the Noble (1962) model in the search results.

[image: ../_images/annotation06.png]

Note

Because your workspace is still private, only you will see it in the search results even if you use the same annotation terms as others. Once a workspace is published, the associated annotations will become visible and searchable by all. Similarly, if you share your workspace with another user they will then see your model show up in their search results for the appropriate ontology terms.

In future, OpenCOR will make use of PMR2 webservices to provide a similar interface as the repository web interface directly in the application. This will allow users to find and reuse existing models all in one place.

Reproducing model behaviour in OpenCOR

In this tutorial, we will be demonstrating how to reproduce the results from a CellML model as they were originally published. Because the repository makes use of Mercurial, even if a workspace has continued being developed after a particular revision is published, we are able to step back through the workspace history to reproduce those original published results.

Following on from the previous tutorial, we make use of the Noble (1962) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/] cardiac cellular electrophysiology model. In this tutorial, we will use the version of this model published in the repository and available here: https://models.physiomeproject.org/e/174. If you navigate from that exposure to the workspace you can check the history as shown below [https://models.physiomeproject.org/w/andre/embc13-n62/@@shortlog].

[image: ../_images/reproduce01.png]

As you can see highlighted in the Exposure column of the history above, there are two exposures for this workspace. For the purposes of this tutorial, we will assume that the earlier exposure [https://models.physiomeproject.org/e/173] corresponds to a study that has been published in a scientific journal. The later exposure [https://models.physiomeproject.org/e/174] is the result of further work on this model following the publication of the journal article. The later exposure illustrates the difference between these two versions of the model. In this tutorial, we aim to reproduce the results as shown in the published journal article - corresponding to the earlier exposure.

Important

It is essential to use a Mercurial client to obtain models from the repository for editing. The Mercurial client is not only able to keep track of all the changes you make (allowing you to back-track if you make any errors), but using a Mercurial client is the only way to add any changes you have made back into the repository.

Cloning an existing workspace

The first step is to clone the workspace containing the model we want to work with. The steps to clone a workspace were demonstrated in the previous tutorial. In summary:

	Copy the source URI for Mercurial clone/push/pull (i.e., https://models.physiomeproject.org/w/andre/embc13-n62);

	Clone the repository (TortoiseHG ‣ Clone or hg clone [uri]) to a folder on your machine.

Check the model

Now that we have the model, we want to ensure that we are able to produce the current results that it should produce. Load the n62.cellml file in the newly cloned folder into OpenCOR and run a simulation for 5000 ms and plot the membrane potential, V. This should result in a similar graph to that shown in the upper figure of the exposure page, reproduced here for convenience.

[image: ../_images/reproduce02.png]

Notice that in the 5000 ms simulation there are five action potentials.

Revert to an earlier version of the model

Now that we are happy the current version of the model reproduces the results that it should, we want to go back to the version of the model that was published in a journal article. This is commonly required because the new work you might want to do with the model will be based on the published model, not its latest version which may have deviated from the validated model which was published.

Using Mercurial, there are several methods by which you can jump around the history of a workspace. The particular method that works best depends a lot on what you want to do with the workspace once you change back to a revision that is not the most recent. Searching the internet for information on the Mercurial (hg) commands: revert, update, and branch; is probably a good place to start working out which is best for your situation. In this case, we have a fairly simple requirement to go back to the revision prior to the current one so that we can reproduce some simulation results. If we were actually going to do further development in this workspace, we would need a more elaborate solution than that described below.

Here, we need to update our local clone of the workspace to a state matching the published journal article. In order to do this, we need to find the appropriate revision identifier to use with our Mercurial client. We can find the revision identifier by navigating to the workspace history tab in the model and choosing the [files] link for the revision corresponding to the earlier exposure, shown below.

[image: ../_images/reproduce03.png]

From the files page, you will see the required revision identifier as highlighted in the image below.

[image: ../_images/reproduce04.png]

You should copy this identifier to the clipboard ready for use in the next step. In your local clone of the workspace, select TortoiseHG ‣ Update... from the context menu. This will bring up the Update dialog.

[image: ../_images/hgUpdate-1.png]

In this dialog, you should paste the revision identifier copied above into the Update to: field (1) and then click the Update button (2).

[image: ../_images/hgUpdate-2.png]

Command line equivalent

hg update -r 9cad4365b0b8

You will now see in your local clone that the files have reverted back to that previous version. Loading this version of n62.cellml into OpenCOR and simulating for 5000 ms should result in the figure matching that presented in the earlier exposure page and reproduced here for convenience.

[image: ../_images/reproduce05.png]

Note in particular that there should now be the same six action potentials that were present in the published version of the model.

 In the preceeding tutorials, you have learnt how to create a new piece of work from scratch using the respository and how to reproduce a "published" result. In this tutorial, we will demonstrate how to take an exisiting piece of work, stored in a public workspace, and develop it further to address a new goal.

Extending an existing CellML model

In this part of the tutorial, we will once again be making use of the Noble (1962) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359535/] cardiac cellular electrophysiology model. We will be taking the model and making changes to alter its behaviour. For this, we will be using the same version of the model published in the teaching instance of the repository: http://teaching.physiomeproject.org/e/173, but the process described below will also work in the main repository site.

Forking an existing workspace

Important

It is essential to use a Mercurial client to obtain models from the repository for editing. The Mercurial client is not only able to keep track of all the changes you make (allowing you to back-track if you make any errors), but using a Mercurial client is the only way to add any changes you have made back into the repository.

For this tutorial, we will fork an existing workspace. This creates a new workspace owned by you, containing a copy of all the files in the workspace you forked including their complete history. This is equivalent to cloning the workspace, creating a new workspace for yourself, and then pushing the contents of the cloned workspace into your new workspace.

Forking a workspace can be done using the repository web interface. The first step is to find the workspace you wish to fork. As before, we will use the workspace from the exposure referenced above, which can be found at: http://teaching.physiomeproject.org/w/andre/embc13-n62.

Once you are logged in, click on the Fork option in the toolbar, as shown below (1).

[image: ../_images/extending01.png]

You will be asked to confirm the fork action by clicking the Fork button (2). You will then be shown the page for your forked workspace.

Cloning your forked workspace

In order to make changes to your workspace, you have to clone it to your own computer. To do this, follow the procedure as described in the earlier tutorial.

Quietening the self excitation

The version of the Noble 1962 model you have just forked and cloned is a model of a Purkinje fibre cell. These cells are capable of acting as pacemaker cells, although usually entrained by the sinoatrial node of the heart. The Noble model reproduces this behavior but is also able to simulate a non-pacing version of the cell model. This is accomplished by decreasing the potassium current which gives rise to the gradual depolarization of the membrane potential seen in the figures from OpenCOR simulations for the model in the previous tutorials. Once the cell is in a quiesent state, we are able to then apply an electrical stimulus to impose our own pacing regime.

If you load the n62.cellml file from the workspace you have just cloned into OpenCOR, set the duration of the simulation to 5000 ms (1), and plot the membrane potential V, you will be able to see the effect of altering the value of the variable g_K_add in the parameters component. As you increase this value you should see the resting potential decrease and the abolution of the self-exciting mechanism. A value of 0.001 mS_per_mmsq keeps the resting potential in the physiological range and makes the cell quiesent (2).

[image: ../_images/extending02.png]

Changes to the parameter value in the simulation view are not currently saved in the model, so to save the change you will need to switch to an editing view (1, 2), find the g_K_add parameter (3), and set the initial_value attribute directly (4), as shown below.

[image: ../_images/extending03.png]

Now would be a good time to commit your changes to your clone of the workspace

Adding an electrical stimulation protocol

Now that we have a quiesent version of the Noble (1962) model, we are able to consider adding our own electrical stimulation protocol. In the Raw CellML view, you will see a component with the name stimulus_protocol as shown below.

[image: ../_images/extending04.png]

As you can see in this snippet of the XML source, there is a stimulus current variable, IStim, which is given a value of 0.0 uA_per_mm2. In this extension to the model we will replace this simple assignment of no stimulus current with a definition of a periodic applied stimulus. The code example below shows one way to encode such a periodic stimulus current in CellML.

<component cmeta:id="stimulus_protocol" name="stimulus_protocol">
 <variable name="IStim" public_interface="out" units="uA_per_mmsq"/>
 <variable name="time" public_interface="in" units="ms"/>
 <variable name="stimPeriod" initial_value="750" units="ms"/>
 <variable name="stimDuration" initial_value="1" units="ms"/>
 <variable name="stimCurrent" initial_value="400" units="uA_per_mmcu"/>
 <variable name="Am" initial_value="200" units="per_mm"/>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply id="stimulus_calculation"><eq />
 <ci>IStim</ci>
 <piecewise>
 <piece>
 <apply><divide/>
 <ci>stimCurrent</ci>
 <ci>Am</ci>
 </apply>
 <apply><lt/>
 <apply><rem/>
 <ci>time</ci>
 <ci>stimPeriod</ci>
 </apply>
 <ci>stimDuration</ci>
 </apply>
 </piece>
 <otherwise>
 <cn cellml:units="uA_per_mmsq">0.0</cn>
 </otherwise>
 </piecewise>
 </apply>
 </math>
</component>

In the above example, we have introduced some new variables to control the frequency, duration, and magnitude of the applied stimulus current. If you replace the stimululs_protocol component in the n62.cellml model with the one above, you are able to view a rendering of the mathematics, as below.

[image: ../_images/extending05.png]

Switching back to the Simulation view, you are able to have a play with those variables to ensure they are behaving as expected. Note: you may need to set the Maximum step for CVODE to 0.1 or change to the Forward Euler integrator in OpenCOR to ensure that your specified stimulus in correctly detected by the numerical integration scheme.

[image: ../_images/extending06.png]

Now would be a good time to commit your changes to your clone of the workspace and push them back to the model repository. You might also want to think about sharing your workspace with your neighbors or to have a look at creating an exposure for your workspace. To learn how to create exposures, please refer to Creating CellML exposures.

MAP Client

This tutorial is designed to show you the capabilites of MAP Client and how it can make use of the Auckland Physiome Repository through it's webservices. The focus of work on the MAP Client to date has been work for the musculoskeletal system which is not appropriate for this tutorial, the tutorials here are exemplary tutorials designed to exhibit the use and capabilites of MAP Client.

Contents:

	Setting Up Pre-requisite Software

	Automatic segmentation of a three-dimensional image stack

	Manually digitising an image stack

	Preliminary CellML simulation step

	Creating your own step

Setting Up Pre-requisite Software

MAP Client is dependent on a number of software packages that must be installed before the application can be run. Some of the plugins that MAP Client makes use of have their own dependencies that must also be installed before the plugins can be used. Here we outline the required dependencies and some notes on installation.

Dependencies

Much of what is covered here is relevant for windows users only as OS X and GNU/Linux based operating systems already have the required dependencies for MAP Client. Also GNU/Linux machines have package managers which facilitate the installation of missing dependencies. It is left as an exercise for the user to install dependencies for operating systems that make use of a package manager.

List of Dependencies

	Python - version 2.7.X is preferred, but version 3.X.Y should also work.

	PySide - Python bindings for the Qt libraries.

	requests_oauthlib - Python package for XXXXXXXX

	rdflib - Python package for working with RDF.

Other Dependencies

As MAP Client is focused on scientific processes the Numpy Python package is quite often used. It is not required by MAP Client itself but it is used by a number of plugins that essentially make it a requirement.

	Numpy - Python package for numerical algorithms

	Zinc - OpenCMISS-Zinc visualisation library

	PyZinc - Python bindings for the OpenCMISS-Zinc library

Automatic segmentation of a three-dimensional image stack

The purpose of this first task is to demonstrate some of the capabilities of the MAP Client workflow tool.

Import Workflow from PMR

Start the 'mapclient' application. Use the 'File' menu to select the import action. The dialog that appears connects to webservices on PMR that will enable us to search for MAP Client workflows.

[image: ../_images/importdialog_blank_1.png]
Figure 1: Import Dialog [1] Workspace url, [2] Search text, [3] Search button, [4] Search results, [5] Destination directory, [6] Directory chooser button, [7] Confirm or cancel import.

We will leave the 'Search text' [2] blank and click the search button to search for all Workflows available on PMR. Once the search results are displayed in [4] select the entry with the title 'Workflow: BloodVesselAutoSegmentation'. This will put the Workspace url in the 'Workspace url' [1] box. Next use the 'Directory chooser button' [7] to choose a local directory for importing the 'Workflow' to. The chosen directory will be put in the 'Destination directory' [5]. When the 'Workflow url' and 'Directory destination' are correct press the 'Ok' button to complete the import.

Blood Vessel Automatic Segmentation Workflow

The Blood Vessel Automatic Segmentation Workflow consists of three workflow steps as shown in Figure 2.

[image: ../_images/autosegmentation_workflow.png]
Figure 2: Blood Vessel Automatic Segmentation Workflow.

	An image source step.

This step is designed to pass the location of an image or images through to another step. This step also has the functionality to download content from PMR.

	An automatic segmentation step.

This step takes in the location of the image set and reads in the images using OpenCMISS-Zinc. The images are analyzed, segmented and then discretized into a point cloud. The output from this step is a list of point locations in the image space.

	A point cloud serialization step.

This step serializes a list of point locations to disk.

Before the workflow can be executed each step in the workflow must be configured and the workflow saved. A gear icon in the bottom right hand corner of the step icon on the workflow canvas indicates whether the step is configured or not. A red icon represents an unconfigured step whilst a green icon represents a configured step. Clicking on the gear icon will display a configuration dialog for the step (if the step requires manual configuration). When a step has been configured correctly the green icon will be displayed. For our workflow we need to configure the image source step and the point cloud serialization step. A detailed discussion on configuring all the steps in this workflow is given below.

Workflow Configuration

This section describes how each step should be configured.

Image Source Step

The image source step requires a unique identifier for the step to be set. It also requires either a location on the local disk where the image data is located or a PMR workspace url from which the image data may be downloaded.

This step configuration makes use of the PMR search widget which gives us the ability to search available workspaces on PMR. We will make use of this functionality in this example. In the image source step configuration dialog seen in Figure 3 we can see that there is a place to set a unique identifier for the step and also two tabs, one tab is for setting the image dataset location on the local disk and the other tab is for searching PMR workspaces for image data. We will leave the local disk edit box on the local file system tab empty and allow the configuration to set the default location.

[image: ../_images/autosegmentation_image_configureblank.png]
Figure 3: Image source step configuration dialog.

Set the identifer edit box to bv_images and select the Physiome Model Repository tab so that we can search PMR for our images. On this tab we see
We are going to conduct an ontological term search for our images, we are looking for some images that show an anyeurism in the anterior communicating artery. To do this we can start entering the text anterior communicating artery into the search term edit box [3], when we pause in our typing the dialog will query the PMR OWL terms for suitable matches. We will see results similar to what is shown in Figure 5, we can click on the matching term in this list and the correct reference will be added to the search term edit box [3] for us.

[image: ../_images/autosegmentation_image_configurepmr.png]
Figure 4: PMR search tab, [1] Workspace url, [2] Search type combobox, [3] Search term, [4] Search button, [5] Search results.

[image: ../_images/autosegmentation_image_owltermscompleter.png]
Figure 5: PMR OWL terms.

With the correct term in place we can click the search button to return matching results from PMR. We will get back a single result Blood Vessel in MR Images. When we select this result in the search results list [5] the url for the workspace will be loaded into the workspace url edit box [1]. We should now have the dialog looking similar to Figure 6.

[image: ../_images/autosegmentation_image_antcommartresults.png]
Figure 6: Completed Physiome Model Repository search tab.

This completes the configuration of the image source step. When we click Ok in the dialog the images will be downloaded to the default directory on our local disk.

We can also use the combobox at the bottom of the dialog (Figure 3) to set the image type however this is only necessary if the image type cannot be determined through the filename extension. In our case we can leave this as it is.

Alternatively, if PMR is unavailable copy the images from a usb memory stick into a directory on your computer, set the location on the local file system tab to this directory.

Automatic Segmentation Step

The automatic segmentation step does not require any configuration. Whilst this makes the configuration stage unnecessary it limits the usefulness or this step since it is configured to work for a only one set of images. An obvious enhancment to this step would be to expose the configurable properties of the segmentation to the user.

Point Cloud Serialization Step

The point cloud serialization step only requires the identifier for the step to be specified. The identifier will also be used to create an output directory of the same name and the serialization of the input data will be placed into a file under this directory. Set the identifier to 'bv_point_cloud' (as in Figure 7).

[image: ../_images/autosegmentation_pointcloud_configure.png]
Figure 7: Point cloud configuration dialog.

Execute the Workflow

Once all the workflow steps have been correctly configured save the workspace. We can do this through the File menu and selecting the save entry or by using the keyboard shortcut 'ctrl+s'. Because we have a workflow based on a version control system the commit dialog will appear so that we can keep a record of the changes. Figure 8 shows this dialog, here we want to choose the skip commit option to save our workflow. In this example we are not going to commit our changes back to the workspace on PMR.

[image: ../_images/pmr_commit_workspace.png]
Figure 8: PMR workspace commit dialog.

At this point we are ready to begin executing the workflow. To do this we click the execute button in the lower right hand corner of the window.

Execution

Once the execute button has been clicked the workflow will start to traverse the underlying directed graph, in our case starting from the image source step. In this simple workflow the only interactive step is the automatic segmentation step which displays a visualisation of the segmentation.

The automatic segmentation step shows a 3D interactive scene, where we can use the mouse to change the view of the scene. A brief description of some of the possible mouse actions is given here, the left-mouse button will rotate the scene, the right-mouse button will zoom the scene and the middle-mouse button will translate the scene. We also have some controls to show and hide the graphical elements in the scene and a slider that will change the z-component of the image plane. Figure 9 shows the segmentation step interactive scene.

[image: ../_images/autosegmentation_autoseg_interaction.png]
Figure 9: Autosegmentation step screen.

To continue with the execution of the workflow click the done button in the lower right hand corner. When the workflow has finished executing all the steps in the workflow the workflow editor screen will be shown.

Check Output

We can now examine the output of the workflow using any text editor. The output is stored in a file called point_cloud.txt in a directory bv_point_cloud which can be found under the workflow directory.

Manually digitising an image stack

The purpose of this task is to demonstrate the coolest step that currently exists for the MAP Client and to highlight the reusable nature of the plugins/steps. Be sure to reference the github collection of steps that is being populated and the idea that people should contribute their steps even if they think they are specific to their own work.

	Configure the image stack to load

	Bring up the manual digitisation editor
	Probably need to provide enough detail that people will be able to use it, possibly link to the relevant documentation in the MAP Client docs?

	Digitise some points

	Explain how to load up some points that have already been defined (like wow!)

	Digitise some more points

	Handover to the output to text file step.

	and the visualise in Zinc step

	Explain how those two output steps are identical to those from the previous task and talk about step-reuse, sharing knowledge, reproducibility, etc.

Preliminary CellML simulation step

What is the state of the CellML-based demo from the CellML workshop? can that be revived and added in here?

Creating your own step

Is it step or plugin?

The purpose of this step is to demonstrate how to define your own step. This will probably be a link to the appropriate section in the MAP Client docs. Using a nice simple process enables the user to intuitively know what output to expect for a given input so it makes it easy for them to play with things, predict the outcome, and check the actual outcome matches their prediction.

As well as linking to the docs for the standard how to create a step, be sure to encourage them to look into the source for the steps used in the tasks above - which are all available somewhere...

Auckland Physiome Repository

The documentation found here is mainly aimed towards providing
information to users of the Auckland Physiome Repository [https://models.physiomeproject.org]. This includes users interested
in obtaining and running models from the respository, and those who wish
to add models to the repository.

If you wish to deploy an instance of the repository software,
PMR2, please see the buildout repository [https://github.com/PMR2/pmr2.buildout] on GitHub.

	Auckland Physiome Repository - an introduction

	Downloading and viewing models from the Auckland Physiome Repository

	Working with workspaces

	Tutorial on using CellML with Auckland Physiome Repository

	Working with semantic metadata

	Creating CellML exposures

	Creating FieldML exposures

	Embedded workspaces and their uses

	CellML Curation in the legacy Physiome Model Repository

	Glossary

Todo

	Update all documentation to reflect workspace ID changes and user
workspace changes, if they go ahead.

	Get embedded workspaces doc written.

	Get some best practice docs written.

Auckland Physiome Repository - an introduction

The Auckland Physiome Repository, includes the CellML and FieldML
repositories, and is powered by software called PMR2. PMR2 relies on
the distributed version control system Mercurial [http://mercurial.selenic.com/] (Hg), which allows
the repository to maintain a complete history of all changes made to
every file contained within repository workspaces. In order to
use the Physiome Model Repository, you will need to obtain a Mercurial
client for your operating system, and become familiar with the basic
functions of Mercurial. There are many excellent resources available on
the internet, such as Mercurial, the definitive guide [http://hgbook.red-bean.com/read/]. Mercurial
clients may be downloaded from the Mercurial website [http://mercurial.selenic.com/], which also
provides documentation on Mercurial usage. A graphical alternative to a
command-line client is available for Windows, called TortoiseHg [http://tortoisehg.bitbucket.org/].
This provides a Windows explorer integrated system for working with
Mercurial repositories.

Downloading and viewing models from the Auckland Physiome Repository

There are several ways of obtaining and using models from the Auckland
Physiome Repository, and which you choose will depend on the way you
intend to use the models. If you are simply interested in running a
particular model and viewing the output, you can use links found on
model exposure pages to get hold of the model files. There links
available for a large number of models that will load the model directly
into the OpenCell application, allowing you to explore simulation
results with the help of a model diagram.

If you intend to use the model for further work, for example saving
changes to the model or creating a new model based on an existing model
or parts of an existing model, you should use Mercurial to
obtain the files. In this way you also obtain the complete revision
history of the files, and can add to this history as you make your own
changes.

Searching the repository

The Auckland Physiome Repository has a basic search function that can be
accessed by typing search terms into the box at the top right hand side
of the page. You can use keywords such as cardiac or insulin,
author names, or any other terms relevant to the models you want to
find.

[image: ../_images/downloading-searches1.png]
The index page of the model repository provides two methods for
finding models. There is a box for entering search terms, or you can
click on categories based on model keywords to see all models in
those categories.

If your search is yielding too many results, you may either try to
narrow it down by choosing more or different keywords (eg. goldbeter
1991 instead of just goldbeter), or you can click the Advanced
Search link just under the search box on the results page. This will
take you to a search page where you can select specific item types
(eg. exposures or workspaces).

[image: ../_images/tut1-advancedsearch.png]
In this search only exposure related items are to be shown in
the results.

Once you have found the model you are interested in, there are several
ways you can view or download it.

Viewing models via the respository web interface

The most common use of the Auckland Physiome Repository web interface is
probably to view information about models found on exposure pages, and
to then download the models from these pages for simulation in a CellML
supporting application.

Below is an example of a CellML exposure page. It contains documentation
about the model(s), a diagram of the what the model(s) represent, and a
navigation pane that allows the user to select between available
versions of the model. Many models only have one version, but in this
case there are two variants.

[image: ../_images/exposureeg1.png]
An example of a CellML exposure page.

If you click on one of the model variant navigation links, you will be
taken to a sub-page of the exposure which will allow you to view the
actual CellML model in a number of ways.

[image: ../_images/exposureeg2.png]
An example of a CellML exposure sub-page.

On this page there are a number of options under a Views available
panel at the right hand side.

	Documentation - displays the model documentation, already visible in
the main area of the exposure page.

	Model Metadata - displays information such as the citation
information, model authorship details, and keywords.

	Model Curation - displays the curation stars for the model, also
visible at the top right of the page. Future additions to the curation
system mean that there will be additional information to be displayed
on this page.

	Mathematics - displays all the equations in the model in graphical
form.

	Generated code - shows a page where you can view the model in a
number of different languages; C, C_IDA, Fortran 77, MATLAB, and
Python. You can copy the generated code directly from this page to
paste into your code editor.

	Cite this model - this page provides generic information about how
to cite models in the repository.

	Source View - provides a raw view of the CellML (XML) model code.

	Simulate using OpenCell - this link will download the model and open
it with OpenCell [http://www.cellml.org/tools/opencell/] if you have the software installed. If the model has
a session file, this will include an interactive diagram which can be
clicked on to display traces of the simulation results.

The OpenCell session that is loaded when clicking on the Simulate using
OpenCell link looks something like this:

[image: ../_images/sessionexample1.png]
An OpenCell session. Objects such as membrane channels in the diagram
can be clicked - this will toggle the graph traces displaying the
values for those objects.

Downloading models via Mercurial

All data in the Auckland Physiome Repository are stored in
workspaces and each workspace is a Mercurial
repository. The most comprehensive method of downloading content from
Auckland Physiome Repository is to clone the workspace containing the
desired data. In this manner you will have a local copy of the entire
history of that data, including all provenance data, and the ability to
step back through the history of the workspace to a state that may not
be available via the download links in the exposure pages discussed
above. If you would like to modify the contents of workspace, making use
of Mercurial will ensure accurate provenance records are maintained as
well as all the other benefits of using a version control system.

As software tools like OpenCOR [http://abibook2.readthedocs.org/en/latest/OpenCOR/] and MAP Client [http://abibook2.readthedocs.org/en/latest/MAP/] evolve, they will be
able to hide a lot of the Mercurial details and present the user with a
user interface suitable for their specific application areas. Directly
using Mercurial is, however, currently the most powerful way to leverage
the full capabilities of Auckland Physiome Repository.

If you are using the command line Mercurial client, you can easily clone
the underlying repository for an exposure simply by selecting the text
box inside the Collaboration portlet and paste that command into a
terminal, or right click on the name of the workspace under the
Source portlet and copy that URL and then paste that into your
Mercurial client.

Detailed instructions for working with Mercurial can be found in the
CellML repository tutorial.

Working with workspaces

Section author: David Nickerson

All models in the Auckland Physiome Repository exist in
workspaces, which are Mercurial repositories that can be
used to store any kind of file. Mercurial is a distributed version
control system (DVCS).

In order to create your own workspaces, you will first need to create a
repository account by registering at models.physiomeproject.org [https://models.physiomeproject.org]. Near the top right of the
repository page there will be links labelled Log in and Register.
Click on the register link, and follow the instructions.

Workspaces in the Auckland Physiome Repository are permanent once they
are created. There is a teaching instance [http://teaching.physiomeproject.org/] of the repository which may
be used for experimenting with features of the software without
worrying about creating permanent workspaces that might have errors in
them. Users accounts and data from the Auckland Physiome Repository
will be copied to the teaching instance [http://teaching.physiomeproject.org/] periodically, overwriting all
data there in the process, but users may register for an account just on
the teaching instance [http://teaching.physiomeproject.org/] if they prefer. Such accounts will need to be
recreated each time the teaching instance is overwritten.

Note

The teaching instance of the repository is a mirror of the main
repository site found at http://models.physiomeproject.org/,
running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not
permanent, and will be overwritten with the contents of the main
repository whenever the teaching instance is upgraded to a new
release of PMR2. For this reason, you can feel free to experiment
and make mistakes when pushing to the teaching instance. Please
subscribe to the cellml-discussion [http://lists.cellml.org/mailman/listinfo] mailing list to receive
notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for
instructions on how to migrate any content from the teaching instance
to the main (permanent) Auckland Physiome Repository.

Creating a new workspace

Once a user is logged into Auckland Physiome Repository, they will be
presented with a My Workspaces link in the top toolbar, as
shown below:

[image: ../_images/my-workspaces.png]

The first paragraph includes a link to your dashboard to add a new
workspace, shown below:

[image: ../_images/add-workspace-dashboard.png]

Currently Mercurial is the only avialable option for the storage
method for a new workspace, but this may be expanded to include other
storage methods in future. A workspace should be given a meaningful
title and a brief description to help locate the workspace using the
repository search. Both these fields can be edited later, so don't worry
if you don't get it perfect the first time.

Clicking the Add button with then create the workspace,
which will initially be empty, as shown below:

[image: ../_images/new-workspace.png]

In the figure above, the URI of the newly created workspace has been
highlighted. This is the URI that will be used when operating on the
workspace using Mercurial.

Working with collaborators

The repository makes use of Mercurial to manage individual
workspaces. Mercurial is a Distributed Version Control System (DVCS),
and as such encourages collaborative development of your model, dataset,
results, etc. Using Mercurial, each member of the development team is
able to have their own clone of the workspace which can be kept
synchronized with the other members of the development team, while
ensuring that each team member's contributions are accurately recorded
in the workspace history.

Once a workspace has been published, any registered users (or
members) of the repository is able to access and clone the workspace,
including team members and the anonymous public. Only the owner and
those with privileges granted by the owner are able to make changes to
the workspace, including pushing changes into the Mercurial
repository. Private workspaces, however, can only be viewed by its
owner and those with viewing privileges granted by its owner.

Auckland Physiome Repository provides access controls to manage the
ability of its members and anonymous users to interact with workspaces.
The access control is managed via the Sharing tab for a
given workspace, as shown below.

[image: ../_images/sharingTab.png]

By default, you will initially see that all logged-in user has the
Can add permission. That is the inherited permission from the
global workspace container, and does not imply that they can view your
work as that is determined by the Can view permission. This also
does not mean that they can add data to your workspace. This permission
setting is applied to the default workspace container so that you and
all other users of the system have the ability to create new workspaces.

PMR2 has the option to provide individual containers per user
for their private workspaces, but this option is now disabled in the
Auckland Physiome Repository.

You can disable the inherited higher level permissions from your
workspace by unchecking the Inherit permissions from higher levels
checkbox, if you wish, but the administrators of the repository can
access your workspace regardless if you wish for them to aid you with
your workspace. Using the Sharing tab you are able to
search for other members, such as the names of people in your
development team. These members would then appear in the list of
members and you are able to set their access as required.

Using the Sharing controls there are currently four possible
permissions that can be controlled. The Can add and Can edit
permissions relate to the object that represents the workspace in the
website database and are generally left in the default state. When
selected for a given member, the Can view permission allows that
member to view the workspace on the website, even if the workspace is
private. Similarly, when the Can hg push permission is enabled the
selected member is able to push into the workspace - this is the
most important permission as enabling this allows members to add,
modify, and delete the actual content of the workspace. One benefit of
using Mercurial means that even if one of the privileged members
accidentally modifies the workspace in a detrimental manner, it is
possible to revert the workspace back to the correct state.

When working in a collaborative team you would generally enable the
Can hg push and Can view permissions for all team members and
only enable the Can add and Can edit permissions for the team
members responsible for the workspace presentation in the website.

Alternatively, if you wish to make your work available for searching by
any users, including the ones who do not have an account with the
repository, you may do so by changing the workflow state from "private"
to "submit for publication". This will put your workspace into the
reviewer queue and they will turn it into the "published" state.

[image: ../_images/workspacesubmit.png]

Uploading files to your workspace

The basic process for adding content to a workspace consists of
the following steps:

	Clone the workspace to your local machine.

	Add files to cloned workspace.

	Commit the files using a Mercurial client.

	Push the workspace back to the repository.

An example demonstrating these steps can be found in in this tutorial
step: Populate with content [http://abibook2.readthedocs.org/en/latest/tutorials/embc13/scenario1/opencor/#embc13-opencor-addingcontent], or continue on to the next section of
this guide.

Tutorial on using CellML with Auckland Physiome Repository

Section author: David Nickerson, Randall Britten, Dougal Cowan

About this tutorial

The Auckland Physiome Repository provides extensive support for CellML
model and related files. Previously it was called the CellML Model
Repository, this has since been merged completely along with the FieldML
Model Repository into the unified repository. The underlying software
is PMR2, which in turn relies on the distributed version control
system Mercurial (Hg), which allows the repository to maintain a
complete history of all changes made to every file it contains. This
tutorial demonstrates how to work with the repository using TortoiseHg,
which provides a Windows explorer integrated system for working with
Mercurial repositories.

Brief mention of the equivalent command line versions of the
TortoiseHg actions will also be mentioned, so that these ideas can
also be used without a graphical client, and on Linux and similar
systems. These will be denoted by boxes like this.

This tutorial requires you to have:

	A Mercurial client such as TortoiseHg [http://tortoisehg.bitbucket.org/] or Mercurial [http://mercurial.selenic.com/] installed

	The OpenCell [http://www.cellml.org/tools/opencell] CellML
modelling environment

	A text editor such as Notepad++ [http://notepad-plus-plus.org/] or
gedit [http://projects.gnome.org/gedit/]

Basic concepts

The Auckland Physiome Repository use a certain amount of jargon - some
is specific to the repository software, and some is related to
distributed version control systems (DVCSs). Below are basic
explanations of some of these terms as they apply to the repository.

Workspace

A container (much like a folder or directory on your computer) to hold
the files that make up a model, as well as any other files such as
documentation or metadata, etc. In practical terms, each workspace is
a Mercurial repository.

Exposure

An exposure is a publicly viewable presentation of a particular
revision of a model. An exposure can present one or many files from
your workspace, along with documentation and other information about
your model.

The Mercurial DVCS has a range of terms that are useful to know, and
definitions of these terms can be found in the Mercurial glossary:
http://mercurial.selenic.com/wiki/Glossary.

Working with the repository web interface

This part of the tutorial will teach you how to find models in the
Auckland Physiome Repository https://models.physiomeproject.org,
how to view a range of information about those models, and how to
download models. The first page in the repository consists of basic
navigation, a link to the main model listing, a search box at the top
right, and a list of model category links as shown below.

[image: ../_images/tut1-mainscreen.png]
The front page of the Auckland Physiome Repository.

Model listings

Clicking on the main model listing or any of the category listings will
take you to a page displaying a list of exposed models in that category.
Click on electrophysiology for example, and a list of over 100 exposed
models in that category will be displayed, as shown here.

[image: ../_images/tut1-modellistings.png]
A list of models in the electrophysiology category.

Clicking on an item in the list will take you to the exposure page for
that model.

Searching the repository

You can search for the model that you wish to work on by entering a
search term in the box at the top right of the page. Many of the models
in the repository are named by the first author and publication date of
the paper, so a good search query might be something like goldbeter
1991. A list of the results of your search will probably contain both
workspaces and exposures - you will need to click on the workspace of
the model you wish to work on. Workspaces can be identified by where
they are located, as they will be located inside Workspaces.
In the following screenshot, the first two results are workspaces, and
the remainder are exposures. Note that red links are exposures that are
marked as expired.

[image: ../_images/tut1-searchresults.png]
A search results listing on the Auckland Physiome Repository.

Click on an exposure result to view information about the model and to
get links for downloading or simulating the model. Click on workspaces
to see the contents of the model workspace and the revision history of
the model.

Working with the repository using Mercurial

This part of the tutorial will teach you how to clone a
workspace from the model repository using a Mercurial client, create
your own workspace, and then push the cloned workspace into your new
workspace in the repository. We will be using a fork of an
existing workspace, which provides you with a personal copy of a
workspace that you can edit and push changes to.

Registering an account and logging in

First, navigate to the teaching instance [http://teaching.physiomeproject.org] of the Auckland Physiome
Repository at http://teaching.physiomeproject.org/.

Note

The teaching instance of the repository is a mirror of the main
repository site found at http://models.physiomeproject.org/,
running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not
permanent, and will be overwritten with the contents of the main
repository whenever the teaching instance is upgraded to a new
release of PMR2. For this reason, you can feel free to experiment
and make mistakes when pushing to the teaching instance. Please
subscribe to the cellml-discussion [http://lists.cellml.org/mailman/listinfo] mailing list to receive
notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for
instructions on how to migrate any content from the teaching instance
to the main (permanent) Auckland Physiome Repository.

In order to make changes to models in the CellML repository, you must
first register for an account. The Log in and Register links can be
found near the top right corner of the page. Your account will have the
appropriate access privileges so that you can push any changes you have
made to a model back into the repository.

Click on the Register link near the top right, and fill in the
registration form. Enter your username and desired password. After
completing the email validation step, you can now log in to the
repository.

Note

This username and password are also the credentials you use to
interact with the repository via Mercurial.

Once logged in to the repository, you will notice that there is a new
link in the navigation bar, My Workspaces. This is where all the
workspaces you create later on will be listed. The Log in and Register
links are also replaced by your username and a Log out link.

Mercurial username configuration

Important

Username setup for Mercurial

Since you are about to make changes, your name needs to be recorded
as part of the workspace revision history. When commit your changes
using Mercurial, it is initially "offline" and independent of the
Auckland Physiome Repository. This means that you have to set-up
your username for the Mercurial client software, even though you have
registered a username on Auckland Physiome Repository.

You only need to do this once.

Steps for TortoiseHg:

	Right click on any file or folder in Windows Explorer, and select
TortoiseHg ‣ Global Settings.

	Select Commit and then enter your name followed by your e-mail
address in "angle brackets" (i.e. less-than "<" and greater-than ">").
Actually, you can enter anything you want here, but this is the
accepted best practice. Note that this information becomes visible
publicly if the workspace that you push your changes to is public.

Steps for command line:

	
	Edit the config text file:

	
	For per repository settings, the file in the repository:
<repo>\.hg\hgrc

	System-wide settings for Linux: %USERPROFILE%\.hgrc

	System-wide settings for Windows: %USERPROFILE%\mercurial.ini

	Add the following entry:

[ui]
username = Firstname Lastname <firstname.lastname@example.net>

Forking an existing workspace

Important

It is essential to use a Mercurial client to obtain models from the
repository for editing. The Mercurial client is not only able to keep
track of all the changes you make (allowing you to back-track if you
make any errors), but using a Mercurial client is the only way to add
any changes you have made back into the repository.

For this tutorial we will fork an existing workspace. This
creates new workspace owned by you, containing a copy of all the files
in the workspace you forked including their complete history. This is
equivalent to cloning the workspace, creating a new workspace for
yourself, and then pushing the contents of the cloned workspace into
your new workspace.

Forking a workspace can be done using the Physiome Model Repository web
interface. The first step is to find the workspace you wish to fork. We
will use the Beeler, Reuter 1977 workspace which can be found
at:
http://teaching.physiomeproject.org/workspace/beeler_reuter_1977.

Now click on the fork option in the toolbar, as shown below.

[image: ../_images/fork1.png]

You will be asked to confirm the fork action by clicking the
Fork button. You will then be shown the page for your forked
workspace.

Cloning your forked workspace

In order to make changes to your workspace, you have to clone it
to your own computer. In order to do this, copy the URI for mercurial
clone/pull/push as shown below:

[image: ../_images/tut1-cloneurl.png]
Copying the URI for cloning your workspace.

In Windows explorer, find the folder where you want to create the clone
of the workspace. Then right click to bring up the context menu, and
select TortoiseHG ‣ Clone as shown below:

[image: ../_images/tut1-tortoisehgclone.png]

Paste the copied URL into the Source: area and then click the Clone
button. This will create a folder called beeler_reuter_1977_tut that
contains all the files and history of your forked workspace. The folder
will be created inside the folder in which you instigated the clone
command.

Command line equivalent

hg clone [URI]

You will need to enter your username and password to clone the
workspace, as the fork will be set to private when it is created.

The repository will be cloned within the current directory of your
command line window.

Making changes to workspace contents

Your cloned workspace is now ready for you to edit the model file and
make a commit each time you want to save the changes you have made. As
an example, open the model file in your text editor and remove the
paragraph which describes validation errors from the documentation
section, as shown below:

[image: ../_images/tut1-editcellmlfile.png]

Save the file. If you are using TortoiseHg, you will notice that the
icon overlay has changed to a red exclamation mark. This indicates that
the file now has uncommitted changes.

Committing changes

If you are using TortoiseHg, bring up the shell menu for the altered
file and select TortoiseHg ‣ Hg Commit. A window will
appear showing details of the changes you are about to commit, and
prompting for a commit message. Every time you commit changes, you
should enter a useful commit message with information about what changes
have been made. In this instance, something like "Removed the paragraph
about validation errors from the documentation" is appropriate.

Click on the Commit button at the far left of the toolbar. The icon
overlay for the file will now change to a green tick, indicating that
changes to the file have been committed.

[image: ../_images/tut1-commitchanges.png]

Command line equivalent

hg commit -m "Removed the paragraph about validation errors from the documentation"

Pushing changes to the repository

Your cloned workspace on your local machine now has a small history of
changes which you wish to push into the repository.

Right click on your workspace folder in Windows explorer, and select
TortoiseHg ‣ Hg Synchronize from the shell menu. This
will bring up a window from which you can manage changes to the
workspace in the repository. Click on the Push button in the toolbar,
and enter your username and password when prompted.

[image: ../_images/tut1-pushchanges.png]

Command line equivalent

hg push

Now navigate to your workspace and click on the history toolbar button.
This will show entries under the Most recent changes, complete with the
commit messages you entered for each commit, as shown below:

[image: ../_images/tut1-newhistoryentry.png]

Create an exposure

As explained earlier, an exposure aims to bring a particular
revision to the attention of users who are browsing and searching the
repository.

There are two ways of making an exposure - creating a new exposure from
scratch, or "Rolling over" an exposure. Rolling over is used when a
workspace already has an existing exposure, and the updates to the
workspace have not fundamentally changed the structure of the workspace.
This means that all the information used in making the previous exposure
is still valid for making a new exposure of a more recent revision of
the workspace. Strictly speaking, an exposure can be rolled over to an
older revision as well, but this is not the usual usage.

As you are working in a forked repository, you will need to create a new
exposure from scratch. To learn how to create exposures, please refer to
Creating CellML exposures.

Migrating content to the main repository

As noted above, the teaching instance [http://teaching.physiomeproject.org] used in this tutorial is not
suitable for permanent storage of your work. One of the advantages of
using a distributed version control system to manage workspaces
is that it is straightforward to move the entire workspace, including
the full history and provenance record, from one location to another.
PMR2 also provides a feature that exports exposures so that they can
then be imported into another PMR2 instance.

For example: if you would like to move your work in your workspace on
the teaching instance into a new workspace on the Auckland Physiome
Repository (or from one PMR2 instance to another), you should follow
these steps:

	Ensure that you have pushed all your commits to the source instance;

	Create the new workspace in the
destination repository;

	Navigate to the workspace created and choose the
synchronize action from the workspace toolbar, as shown
below.

[image: ../_images/synchronize-form.png]

	Fill in the URI of your workspace on the source instance (e.g.,
http://models.physiomeproject.org/w/andre/cortassa-ECME-2006)

	Click the Synchronize button.

In a similar manner, you are able to copy exposures you might
have made on the teaching instance over to the main repository, or from
the main to the teaching instance if you want to test things out. Follow
these steps to migrate an exposure from one repository to
another.

	Navigate to the exposure you would like to migrate in the source
repository.

	Choose the wizard item from the toolbar as shown below.

[image: ../_images/exposure-wizard-highlight-export.png]

	In the destination repository, navigate to the desired revision of
the (published) workspace and choose the Create exposure
action as described in the directions for creating an exposure
from scratch

	Rather than building a new exposure, choose the Exposure
Import via URI tab in the exposure creation wizard, as shown below.

[image: ../_images/exposure-wizard-import-from-uri.png]

	Copy and paste the URI from the source exposure wizard, highlighted
above, into the Exposure Export URI field in the exposure
creation wizard shown above.

	Click the Add button. This will take you back to the
standard exposure build page, but now
with all the fields pre-populated from the source exposure.

	Navigate to the bottom of the page and click the Build
button to actually build the exposure pages. You are free to
reconfigure the exposure if desired, some help is available for this if needed.

Working with semantic metadata

Section author: Tommy Yu

PMR2 release 8 and 9 brought in the support for semantic metadata, which
allows users to add whatever metadata and annotations they might have
stored into the repository into the underlying metadata semantic engine,
which then allows them to be retrieved using search queries. In this
section, we will go over how to use OpenCOR to annotate a model, and how
to add the metadata to the underlying metadata engine then query for the
results.

Preparation

In this section, we assume that you have already run through the
tutorial on using the repository for
the basic operations of the repository.

For the tutorial, we will use a fork of the the Hodgkin,
Huxley, 1952 workspace [http://teaching.physiomeproject.org/workspace/hodgkin_huxley_1952]. If you need a quick reminder on how you might
do this, please see this section of the tutorial.

Once you forked that workspace, you should now clone that workspace onto
your system. If you need help on this, please refer to this help
on cloning a workspace.

Using OpenCOR for model annotation

Use OpenCOR to open your local clone of your model file, specifically
the hodgkin_huxley_1952.cellml file.

[image: ../_images/metadata-opencor-start.png]

Select the sodium_channel component under the list of components,
then click on the helpful link to remove the existing metadata for that
node.

In the dropdown menu of Qualifiers, select bio:isVersionOf

In the textbox Term, type in "sodium channel", as the component is
named so. Wait for the possible terms to be retrieved and populated by
OpenCOR.

Once that is done, hit the green '+' button for the "sodium channel
complex" (GO:0034706) to denote that the component is a version of this
term.

[image: ../_images/metadata-opencor-annotating.png]

Now select the potassium_channel component, and repeat the processs
to annotate this with the "potassium channel complex" term.

Once you are done, save your changes, commit and push your work back
into your private fork. Again, refer to the tutorial linked in the
preparation section if you need a primer.

Getting your workspace indexed by the repository

Now that your changes have been pused back, go back to the page for your
fork of the model and select the "RDF Indexing" tab.

[image: ../_images/metadata-pmr2-rdfindexing.png]

Scroll down the left-handed list until you see the
hodgkin_huxley_1952.cellml file, select it, then push the button
with the right arrow on it to add it onto the list of paths to be
tracked, then select the "Apply Changes and Export To RDF Store" button.

Go back to the main page, select the "Ontology based search engine" link
at the bottom, then enter the relevant search term. As there are
limited reasoning capabilities built into the current iteration of the
search engine, you may enter a term one level up above the terms we
annotated the model with. For our example, please enter "cation channel
complex" into the search box, select the term ending with (GO_0034703).
The search indicator will give a green checkmark and now you may select
the "Search" button. The search result will now list the workspace and
the file that contain this annotation.

[image: ../_images/metadata-pmr2-search.png]

Creating CellML exposures

Section author: Dougal Cowan

CellML models in the Auckland Physiome Repository are presented through
exposures. An exposure is a view of a particular revision of a
workspace, and is quite flexible in terms of what it can present. A
workspace may contain one or more models, and any number of models may
be presented in a single exposure. Exposures generally take the form of
some documentation about the model(s), a range of ways of looking at the
model(s) or their metadata, and links to download the model(s).

The example below shows the main exposure page for the Bondarenko et
al. 2004 workspace. This workspace contains two models, which can be
viewed via the Navigation pane on the right hand side of the page.

[image: ../_images/exposureeg1.png]
Example of an exposure page

If you click on one of the model navigation links, it will take you to
the page for that particular model. Exposures most often present a
single model, although they can present any number of models, each with
its own documentation and views.

[image: ../_images/exposureeg2.png]
Example of a model exposure page

Most of the CellML exposures in the repository are currently of this
type, with a main documentation page containing navigation links to the
model or models themselves.

The model pages have links that enable the user to do things like view
the model equations, look at the citation information, or run the model
as an interactive session using the OpenCell application. These links
are found in the pane titled Views available on the right hand side of
the page.

This tutorial contains instructions on how to create one of these
standard CellML exposures, as well as information about how to create
other alternative types of exposure.

Creating standard CellML exposures

In this example I will use a fork of the the Beeler Reuter 1977
workspace. Creating a fork of a workspace creates a clone of that
workspace that you own, and can push changes to. You can fork any
publicly available workspace in the AUckland Physiome Repository. For
more information on this feature, refer to the information on features
or collaboration, or see the relevant section of the tutorial.

At this point you are recommended to submit the workspace for
publication, using the state: menu at the top right of the workspace
view page. This is especially important if you decide to make an
exposure public, as having a private workspace for a public exposure
will impede access of linked data, such as images for the introduction
to that particular exposure.

[image: ../_images/submitworkspaceforpublication.png]
The state menu is used to submit objects such as workspaces for
publication. Submitted items will be reviewed by site administrators
and then published.

Choose the revision to expose

As an exposure is created to present a particular revision of a
workspace, the first thing to do is to navigate to that revision. To do
this, first find the workspace - if this is your own workspace, you can
click on the My Workspaces button in the navigation bar of the
repository and find the workspace of interest in the listing displayed.
After navigating to your workspace, click on the history button in the
menu bar.

[image: ../_images/workspacehistory.png]
The revision history of a fork of the Beeler Reuter 1977
workspace

Now you can select the revision of the workspace you wish to expose by
clicking on the manifest of that revision. Usually you will want to
expose the latest revision, which appears at the top of the list.

After selecting the revision you wish to expose, click on the workspace
actions menu at the far right end of the menu bar and select create
exposure.

[image: ../_images/revisioncreateexposure.png]
Selecting the manifest of the revision to expose

Building the exposure

Selecting the create exposure option in the menu bar will bring you to
the first page of the exposure wizard. This web interface allows you
to select the model files, documentation files, and settings that will
be used to create the exposure.

The initial page of the exposure creation wizard allows you to select
the main documentation file and the first model file. Select the HTML
annotator option and the HTML documentation file for the workspace in
the Exposure main view section. For the New Exposure File Entry
section, choose the CellML file you wish to expose, and select CellML as
the file type.

[image: ../_images/wizard1.png]
Selecting the main documentation and the first CellML model file

Note

Documentation should be written in HTML format.
Some previous users of the CellML repository may be familiar with the
tmpdoc style documentation, which has be deprecated. For an example of
what a fairly standard HTML documentation file might look like, take a
look at the documentation for the Beeler Reuter 1977 model [http://models.cellml.org/workspace/beeler_reuter_1977/file/fdd29a005ffcf9a72d7ef2479cafb864ea1e887a/beeler_reuter_1977_documentation.html].

Once you have selected the documentation and model files and their
types, click on the Add button. This will take you to the next step of
the wizard, where you can select various options for the model you have
chosen to expose, and will allow you to add further model files to the
exposure if desired.

[image: ../_images/wizard2.png]
Note that if your workspace is not publicly accessible, there will
be an informative note for this which you can safely ignore as there
are no process within the generation of the exposure that must
require a publicly accessible workspace.

The wizard shows a subgroup for each CellML file to be included in the
exposure. For each CellML file, select the following options:

	
	Documentation

	
	Documentation file - select the HTML file created to document the
model

	View generator - select HTML annotator option

	
	Basic Model Curation

	
	Curation flags - CellML model repository curators may select flags
according to the status of the model

	
	License and Citation

	
	File/Citation format - select CellML RDF metadata to automatically
generate a citation page using the model RDF

	License - select Creative Commons Attributions 3.0 Unported, in the
cases where the above option is unsuitable.

	
	Source Viewer

	
	Language Type - select xml

	
	OpenCell Session Link

	
	Session File - select the session.xml if it has been created

[image: ../_images/wizard3.png]
Selecting options for the model file subgroup

After selecting the subgroup options, you need to select the Update
button to apply the chosen options for the exposure builder, as this is
an independent subform to the main form. The options you selected will
be ignored if this Update button is not selected, and the options will
be replaced by the default options when you click Build before this
was done.

For exposures where you wish to expose multiple models, click on the
Add file button at this stage to create another subgroup. You can then
use this to set up all the same options listed above for the additional
model file. Remember to click Update when you have completed selecting
the options for each subgroup before adding another subgroup.

After setting all the options for the models you wish to expose, click
on the Build button. The repository software will then create the
exposure pages and display the main page of the exposure.

Making your work publicly accessible

In order to make the exposure visible and searchable, you will need to
publish it. You can choose to submit your exposure for review, so that
the repository administrators or curators will know to publish it for
you. Naturally, if you have sufficient privileges you can publish it
directly.

[image: ../_images/exposurepublish.png]
Publish your exposure to make it visible to others.

Other types of exposure

Because the exposure builder uses HTML documentation, it is possible to
create customized types of exposure that differ from the standard type
shown above. For example, you might want to create an exposure that
simply documents and provides links to models in a workspace that are
encoded in languages other than CellML. You can also use the HTML
documentation to provide tutorials or other documents, with resources
stored in the workspace and linked to from the HTML.

Examples of other exposure types:

	Andre's Hodgkin & Huxley CellML tutorial [http://models.cellml.org/e/e1]

	Testing nested SED-ML proposals with CellML [http://models.cellml.org/e/c2]

	Aslanidi et al. cardiac models encoded in C [http://models.cellml.org/e/ca]

Making an exposure using "rollover"

As explained earlier, an exposure aims to bring a particular
revision to the attention of users who are browsing and searching the
repository.

"Rolling over" an exposure is the method used when a workspace already
has an existing exposure, and the updates to the workspace have not
fundamentally changed the structure of the workspace. This means that
all the information used in making the previous exposure is still valid
for making a new exposure of a more recent revision of the workspace.
Strictly speaking, an exposure can be rolled over to an older revision
as well, but this is not the usual usage.

Note

A forked workspace contains all of the revision history of the
workspace it was created from, but has no linkages to any of the
exposures that existed for the original workspace. However, you may
navigate to the history of the original workspace and select any
exposure, then select the wizard tab to the link to its exported
structure, from which the exposure can be migrated over. Please
see the section on migrating exposure for more details.

From the view page of your workspace, select "exposure rollover".

[image: ../_images/tut1-rolloverbutton.png]

The exposure rollover button takes you to a list of revisions of the
workspace, with existing exposures on the right hand side, and revision
ids on the left. Each revision id has a radio button, used to select the
revision you wish to create a new rolled over exposure for. Each
existing exposure also has a radio button, used to select the exposure
you wish to base your new one on. The most common use case is to select
the latest exposure and the latest revision, and then click the
Migrate button at the bottom of the list.

[image: ../_images/tut1-rolloverlist.png]

The new exposure will be created and displayed. When a new exposure is
created, it is initially put in the private state. This means that
only the user who created it or other users with appropriate permissions
can see it, and it will not appear in search results or model listings.
In order to publish the exposure, you will need to select submit
for publication from the
state menu.

The state will change to "pending review". The administrator or curators
of the repository will then review and publish the exposure, as well as
expiring the old exposure.

Creating FieldML exposures

Section author: Dougal Cowan

FieldML models in the Auckland Physiome Repository [http://models.physiomeproject.org] are presented
through exposures. A FieldML exposure has some similarities to
a CellML exposure - usually consisting of a main documentation page with
some information about the model, accompanied by a range of different
views of the model data and or metadata. FieldML exposures also allow
the real-time three-dimensional display of model meshes within the
browser through the use of the Zinc plugin.

The example screenshots below show the main documentation page view and
the 3D visualization provided by the Zinc viewer.

[image: ../_images/fieldmlexposureexample1.png]
The main documentation view of a FieldML exposure

[image: ../_images/fieldmlexposureexample2.png]
The main Zinc viewer view of the same FieldML exposure

Creating the exposure files

To create a FieldML exposure, the following files will need to be stored
in a workspace in the repository:

	The FieldML model file(s)

	An RDF file containing metadata about the model, and specifying the
JSON file to be used to specify the visualization.

	The JSON file that specifies the Zinc viewer visualization.

	Optionally, documentation (HTML) and images (PNG, JPG etc).

The following example RDF file from comes from the Laminar Structure of
the Heart workspace [http://models.physiomeproject.org/workspace/heart] in the repository:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"
 xmlns:pmr2="http://namespace.physiomeproject.org/pmr2#">
 <rdf:Description rdf:about="">
 <dc:title>
 Laminar structure of the Heart: A mathematical model.
 </dc:title>
 <dc:creator>
 <rdf:Seq>
 <rdf:li>LeGrice, I.J.</rdf:li>
 <rdf:li>Hunter, P.J.</rdf:li>
 <rdf:li>Smaill, B.H.</rdf:li>
 </rdf:Seq>
 </dc:creator>
 <dcterms:bibliographicCitation>
 American Journal of Physiology 272: H2466-H2476, 1997.
 </dcterms:bibliographicCitation>
 <dcterms:isPartOf rdf:resource="info:pmid/9176318"/>
 <pmr2:annotation rdf:parseType="Resource">
 <pmr2:type
 rdf:resource="http://namespace.physiomeproject.org/pmr2/note#json_zinc_viewer"/>
 <pmr2:fields>
 <rdf:Bag>
 <rdf:li rdf:parseType="Resource">
 <pmr2:field rdf:parseType="Resource">
 <pmr2:key>json</pmr2:key>
 <pmr2:value>heart.json</pmr2:value>
 </pmr2:field>
 </rdf:li>
 </rdf:Bag>
 </pmr2:fields>
 </pmr2:annotation>
 </rdf:Description>
</rdf:RDF>

This file provides citation metadata and a reference to the resource
that specifies the Zinc viewer JSON file which will be used to describe
the 3D visualisation of the FieldML model. The file breaks down into
three main sections:

	Lines 3-8, namespaces used.

	Lines 10-23, citation metadata.

	Lines 24-37, resource description. Used to specify the JSON file that
specifies the visualisation.

Example of the JSON file from the same (Laminar Structure of the Heart) workspace:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	{
 "View" : [
 {
 "camera" : [9.70448, -288.334, -4.43035],
 "target" : [9.70448, 6.40667, -4.43035],
 "up" : [-1, 0, 0],
 "angle" : 40
 }
],
 "Models": [
 {
 "files": [
 "heart.xml"
],
 "externalresources": [
 "heart_mesh.connectivity",
 "heart_mesh.node.coordinates"
],
 "graphics": [
 {
 "type": "surfaces",
 "ambient" : [0.4, 0, 0.9],
 "diffuse" : [0.4, 0,0.9],
 "alpha" : 0.3,
 "xiFace" : "xi3_1",
 "coordinatesField": "heart.coordinates"
 },
 {
 "type": "surfaces",
 "ambient" : [0.3, 0, 0.3],
 "diffuse" : [1, 0, 0],
 "specular" : [0.5, 0.5, 0.5],
 "shininess" : 0.5,
 "xiFace" : "xi3_0",
 "coordinatesField" : "heart.coordinates"
 },
 {
 "type": "lines",
 "coordinatesField" : "heart.coordinates"
 }
],
 "elementDiscretization" : 8,
 "region_name" : "heart",
 "group": "Structures",
 "label": "heart",
 "load": true
 }
]
}

	Lines 2-8, sets up the camera or viewpoint for the initial Zinc viewer
display.

	Lines 12-18, specifies the FieldML model files

	Lines 19-41, set up the actual visualisations of the mesh - in this
case, two different surfaces and a set of lines.

	Lines 42-46, specify global visualisation settings.

For more information on these settings, please see the cmgui documentation.

Note

The specifics of these RDF and JSON files are a work in progress, and
may change with each new version of the Zinc viewer plugin
or PMR2.

Creating the exposure in the Auckland Physiome Repository

First you will need to create a workspace to put your model in,
following the process outlined in the document on working with
workspaces.

	Upload your FieldML model files and Zinc viewer specification files.

	Find revision of workspace you wish to expose and create exposure

Exposure wizard procedure

View generator as per CellML; select HTML annotator and HTML doc file

New exposure file entry: select .rdf file and select FieldML (JSON)
type. Click Add.

	Documentation file - same as above

	Curation flags - none (should be removed?)

	No other settings

Click Update.

Click Build.

To see the 3D visualisation, you will need to have the latest Zinc
plugin [http://www.cmiss.org/ReleaseCenter/zinc/releases] installed.

Embedded workspaces and their uses

Section author: David Nickerson

Todo

This section needs more work.

Workspaces in PMR are currently implemented as Mercurial
repositories. One Mercurial feature that is quite useful in the context
of the Auckland Physiome Repository is nested repositories [http://mercurial.selenic.com/wiki/Subrepository]. Using the more
general PMR2 concepts, we term such nesting as embedded
workspaces.

Embedded workspaces:

	are intended to manage the separation of modules which are integrated
to create a model;

	facilitate the sharing and reuse of model components independently
from the source model;

	enable the development of the modules to proceed independently, thus
the version of the workspaces embedded is also tracked; and

	allow authors to make use of relative URIs when linking between data
resources providing a file system agnostic method to describe complex
module relationships in a portable manner.

Workspaces can be embedded at a specific revision or set to track the
most recent revision of the source workspace. Changes made to the source
workspace will not affect any embedding workspace until the author
explicitly chooses to update the embedded workspace. This provides the
author with the opportunity to review the changesets and make an
informed decision regarding alterations to embedded revisions. Any
alterations in the specific revision of an embedded workspace is data
captured in a changeset in the embedding workspace – thus providing a
clear provenance record of the entire dataset in the workspace.

Uses

Best practice

See also the recommendations [http://mercurial.selenic.com/wiki/Subrepository#Recommendations] from
the Mercurial project.

CellML Curation in the legacy Physiome Model Repository

As the Auckland Physiome Repository contains much of the data ported
over from the legacy software products that powered what was called the
CellML Model Repository, the curation system from that system was ported
to Auckland Physiome Repository verbatim. This document describing the
curation aspect of the repository is derived from documentation on the
CellML site.

CellML Model Curation: the Theory

The basic measure of curation in a CellML model is described by the
curation level of the model document. We have defined four levels of
curation:

	Level 0: not curated.

	Level 1: the CellML model is consistent with the mathematics in the
original published paper.

	Level 2: the CellML models has been checked for (i) typographical
errors, (ii) consistency of units, (iii) that all parameters and
initial conditions are defined, (iv) that the model is not
over-constrained, in the sense that it contains equations or initial
values which are either redundant or inconsistent, and (v) that
running the model in an appropriate simulation environment reproduces
the results published in the original paper.

	Level 3: the model is checked for the extent to which it satisfies
physical constraints such as conservation of mass, momentum, charge,
etc. This level of curation needs to be conducted by specialised
domain experts.

CellML Model Curation: the Practice

Our ultimate aim is to complete the curation of all the models in the
repository, ideally to the level that they replicate the results in the
published paper (level 2 curation status). However, we acknowledge that
for some models this will not be possible. Missing parameters and
equations are just one limitation; at this point it should also be
emphasised that the process of curation is not just about "fixing the
CellML model" so that it runs in currently available tools.
Occasionally it is possible for a model to be expressed in valid CellML,
but not yet able to be solved by CellML tools. An example is the seminal
Saucerman et al. 2003 model, which contains ODEs as well as a set of
non-linear algebraic equations which need to be solved simultaneously.
The developers of the CellML editing and simulation environment OpenCell
are currently working on addressing these requirements.

The following steps describe the process of curating a CellML model:

	Step 1: the model is run through OpenCell and COR. COR in
particular is a useful validation tool. It renders the MathML in a
human readable format making it much easier to identify any
typographical errors in the model equations. COR also provides a
comprehensive error messaging system which identifies typographical
errors, missing equations and parameters, and any redundancy in the
model such as duplicated variables or connections. Once these errors
are fixed, and assuming the model is now complete, we compare the
CellML model equations with those in the published paper, and if they
match, the CellML model is awarded a single star - or level 1 curation
status.

	Step 2: Assuming the model is able to run in OpenCell and COR, we
then go onto compare the CellML model simulation output from COR and
OpenCell with the published results. This is often a case of
comparing the graphical outputs of the model with the figures in the
published paper, and is currently a qualitative process. If the
simulation results from the CellML model and the original model match,
the CellML model is awarded a second star - or level 2 curation
status.

	Step 3: if, at the end of this process, the CellML model is still
missing parameters or equations, or we are unable to match the
simulation results with the published paper, we seek help from the
original model author. Where possible, we try to obtain the original
model code, and this often plays an invaluable role in fixing the
CellML model.

	Step 4: Sometimes we have been able to engage the original model
author further, such that they take over the responsibility of
curating the CellML model themselves. Such models include those
published by Mike Cooling and Franc Sachse. In these instances the
CellML model is awarded a third star - or level 3 curation status.
While this is laudable, ideally we would like to take the curation
process one step further, such that level 3 curation should be
performed by a domain expert who is not the author of the original
publication (i.e., peer review). This expert would then check the
CellML model meets the appropriate constraints and expectations for a
particular type of model.

A point to note is that levels 1 and 2 of the CellML model curation
status may be mutually exclusive - in our experience, it is rare for a
paper describing a model to contain no typographical errors or
omissions. In this situation, Version 1 of a CellML model usually
satisfies curation level 1 in that it reflects the model as it is
described in the publication - errors included, while subsequent
versions of the CellML model break the requirements for meeting level 1
curation in order to meet the standards of level 2. Taking this idea
further, this means that a model with 2 yellow stars doesn't necessarily
meet the requirements of level 1 curation but it does meet the
requirements of level 2. Hopefully this conflict will be resolved when
we replace the current star system with a more meaningful set of
curation annotations.

Ultimately, we would like to encourage the scientific modeling community
- including model authors, journals and publishing houses - to publish
their models in CellML code in the Auckland Physiome Repository
concurrent with the publication of the printed article. This will
eliminate the need for code-to-text-to-code translations and thus avoid
many of the errors which are introduced during the translation process.

CellML Model Simulation: the Theory and Practice

As part of the process of model curation, it is important to know what
tools were used to simulate (run) the model and how well the model runs
in a specific simulation environment. In this case, the theory and the
practice are essentially the same thing, and carry out a series of
simulation steps which then translate into a confidence level as part of
a simulator's metadata for each model. The four confidence levels are
defined as:

	Level 0: not curated (no stars);

	Level 1: the model loads and runs in the specified simulation
environment (1 star);

	Level 2: the model produces results that are qualitatively similar to
those previously published for the model (2 stars);

	Level 3: the model has been quantitatively and rigorously verified as
producing identical results to the original published model (3 stars).

Glossary

	Clone

	Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in order to have a local copy of a repository to work in.

	Embedded workspace	Embedded workspaces

	A Mercurial concept that allows workspaces to be nested within other workspaces.

	Exposure	Exposures

	A publicly available page that provides access to and information about a specific revision of a workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s) contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed. CellML files for example are presented with options such as code generation and mathematics display, whereas FieldML models might offer a 3D view of the mesh.

	Fork

	A copy of the workspace which includes all the original version history, but is owned by the user who created the fork.

	Mercurial

	Mercurial [http://mercurial.selenic.com/] is a distributed version control system, used by the Physiome Model Repository software to maintain a history of changes to files in workspaces. See a tour of the Mercurial basics [http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html] for some good introductory material.

	PMR2

	The software that powers the Auckland Physiome Repository.

	Pull	Pulling

	The term used with distributed version control systems for the action of pulling changes from one clone of the repository into another. With PMR, this usually implies pulling from a workspace in the model repository into a clone of the workspace on your local machine.

	Push	Pushing

	The term used with distibuted version control systems for the action of pushing changes from one clone of the repository into another. With PMR, this usually implies pushing from a workspace clone on your local machine back to the workspace in the model repository, but could be into any other clone of the workspace. See a tour of the Mercurial basics [http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html] for some good introductory material.

	Python

	Python is a programming language that lets you work more quickly and integrate your systems more effectively. See http://python.org for all the details.

	Synchronize

	Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

	Workspace	Workspaces

	A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or directory in which files are stored, with the added feature of being version controlled by the distributed version control system called Mercurial [http://mercurial.selenic.com/].

 Using SED-ML to specify simulations

Using SED-ML to specify simulations

Section author: Dougal Cowan

Hopefully PMR will support SED-ML simulations as part of the CellML views.

 OpenCOR

OpenCOR

OpenCOR [http://www.opencor.ws/] is an open source [http://opencor.ws/user/licensing.html], cross-platform and CellML [http://www.cellml.org/]-based modelling environment. The following documentation refers to the 0.3 version of OpenCOR, for which supported platforms can be found here.

This version of OpenCOR can be downloaded from the OpenCOR download page [http://opencor.ws/downloads/index.php].

	User Interfaces
	Command Line Interface (CLI)

	Graphical User Interface (GUI)

	Plugins
	API

	Data Store

	Editing

	Miscellaneous

	Organisation

	Simulation

	Solver

	Support

	Third-party

	Widget

	Glossary

 User Interfaces

User Interfaces

OpenCOR provides two types of user interfaces:

	Command Line Interface (CLI)

	Graphical User Interface (GUI)

 Command Line Interface (CLI)

Command Line Interface (CLI)

Help

$./OpenCOR -h
Usage: OpenCOR [-a|--about] [-c|--command [<plugin>::]<command> <options>] [-h|--help] [-p|--plugins] [-s|--status] [-v|--version] [<files>]
-a, --about Display some information about OpenCOR
-c, --command Send a command to one or all the CLI plugins
-h, --help Display this help information
-p, --plugins Display all the CLI plugins
-s, --status Display the status of all the plugins
-v, --version Display the version of OpenCOR

Version

$./OpenCOR -v
OpenCOR 0.3 (64-bit)

About

$./OpenCOR -a
OpenCOR 0.3 (64-bit)
OS X 10.9 (Mavericks)
Copyright 2011-2014

OpenCOR is a cross-platform CellML-based modelling environment, which can be used to organise, edit, simulate and analyse CellML files.

Plugins

$./OpenCOR -p
The following plugin is loaded:
 - CellMLTools: a plugin to access various CellML-related tools.

Status

$./OpenCOR -s
The following plugins are available:
 - CellMLAPI: the plugin is loaded and fully functional.
 - CellMLSupport: the plugin is loaded and fully functional.
 - CellMLTools: the plugin is loaded and fully functional.
 - Compiler: the plugin is loaded and fully functional.
 - Core: the plugin is loaded and fully functional.
 - CoreSolver: the plugin is loaded and fully functional.
 - LLVM: the plugin is loaded and fully functional.

Command

$./OpenCOR -c help
Commands supported by CellMLTools:
 * Display the commands supported by CellMLTools:
 help
 * Export <in_file> to <out_file> using <predefined_format> as the destination format or <user_defined_format_file> as the file describing the destination format:
 export <in_file> <out_file> [<predefined_format>|<user_defined_format_file>]
 <predefined_format> can take one of the following values:
 cellml_1_0: to export a CellML 1.1 file to CellML 1.0
$./OpenCOR -c CellMLTools::export in.cellml out.cellml cellml_1_0
$./OpenCOR -c CellMLTools::export http://mydomain.com/in.cellml out.txt format.xml

 Graphical User Interface (GUI)

Graphical User Interface (GUI)

OpenCOR offers a consistent GUI across the different platforms it supports. The look and feel of the interface is determined by the plugins which are selected. The first time you run OpenCOR, it will look something like this:

[image: Default looking OpenCOR]
The central area is used to interact with files. By default, no files are open, hence the OpenCOR logo is shown instead. To the sides, there are dockable windows, which provide additional features. Those windows can be dragged and dropped to the top or bottom of the central area:

[image: Use of all docking areas]
Alternatively, they can be undocked:

[image: Undocked window]
Or even closed, either by directly closing the window itself or by unticking the corresponding menu item (under the View menu, or the Help menu for the Help window):

[image: Showing/hiding windows]
To unselect all the plugins will result in OpenCOR looking 'empty':

[image: Empty looking OpenCOR]

Menu

	
	File:

	
	Exit ~ Alt+F4: exit OpenCOR.

	
	View:

	
	Status Bar: show/hide the status bar.

	Full Screen ~ F11: switch to / back from full screen mode.

	
	Tools:

	
	Language: select the language to be used by OpenCOR.

	Plugins...: un/select plugins.

	Reset All: reset all your settings.

	
	Help:

	
	Home Page: open the OpenCOR home page.

	About...: some general information about OpenCOR.

 Plugins

Plugins

OpenCOR is a plugin-based application. This means that if no plugins are selected, then OpenCOR can do next to nothing.

As can be seen by opening the Plugins dialog box (by selecting the Tools ‣ Plugins menu) and by unselecting Show only selectable plugins (if necessary), OpenCOR supports different types of plugins:

[image: Plugins window]
You can select which plugins you want to use. However, plugins which are needed by other plugins (e.g. the Core plugin is needed by the CellMLModelRepositoryWindow plugin) cannot be directly selected. Instead, they will be automatically selected if and only if they are needed by at least one other plugin.

Most of the selectable plugins come with some kind of a GUI, which is of one of two types:

	Window: such a plugin (e.g. the CellMLModelRepositoryWindow and HelpWindow plugins) can be docked around the central area, undocked or hidden, as illustrated here.

	View: such a plugin (e.g. the CellMLAnnotationView and SingleCellView plugins) is used to interact with a file, be it to edit it, simulate it or analyse it.

API

(Non-selectable) API plugins are used to provide access to various APIs:

	CellMLAPI: a plugin to access the CellML API [http://cellml-api.sourceforge.net/].

Data Store

Data Store plugins are used to store and manipulate simulation data:

	CSVDataStore: a CSV [http://en.wikipedia.org/wiki/Comma-separated_values] specific data store plugin.

There is also one non-selectable Data Store plugin:

	CoreDataStore: the core data store plugin.

Editing

Editing plugins are used to edit files:

	CellMLAnnotationView: a plugin to annotate CellML [http://cellml.org] files.

	RawCellMLView: a plugin to edit CellML [http://cellml.org] files using the raw CellML format.

	RawView: a plugin to edit any file.

There are also some non-selectable Editing plugins:

	CoreCellMLEditing: the core CellML [http://cellml.org] editing plugin.

	CoreEditing: the core editing plugin.

Miscellaneous

Miscellaneous plugins are used for various purposes:

	CellMLTools: a plugin to access various CellML [http://cellml.org]-related tools.

	HelpWindow: a plugin to provide help.

There are also some non-selectable Miscellaneous plugins:

	Compiler: a plugin to support code compilation.

	Core: the core plugin.

Organisation

Organisation plugins are used to organise files:

	CellMLModelRepositoryWindow: a plugin to access the CellML Model Repository [http://models.cellml.org].

	FileBrowserWindow: a plugin to access your local files.

	FileOrganiserWindow: a plugin to virtually organise files.

Simulation

Simulation plugins are used to simulate files:

	SingleCellView: a plugin to run single cell simulations.

Solver

Solver plugins are used to provide access to various solvers:

	CVODESolver: a plugin that uses CVODE to solve ODEs.

	ForwardEulerSolver: a plugin that implements the Forward Euler method to solve ODEs.

	FourthOrderRungeKuttaSolver: a plugin that implements the fourth-order Runge-Kutta method to solve ODEs.

	HeunSolver: a plugin that implements the Heun method to solve ODEs.

	IDASolver: a plugin that uses IDA to solve DAEs.

	KINSOLSolver: a plugin that uses KINSOL to solve non-linear algebraic systems.

	SecondOrderRungeKuttaSolver: a plugin that implements the second-order Runge-Kutta method to solve ODEs.

There is also a non-selectable Solver plugin:

	CoreSolver: the core solver plugin.

Support

(Non-selectable) support plugins are used to provide support for various third-party libraries and APIs:

	CellMLSupport: a plugin to support CellML.

	QScintillaSupport: a plugin to support QScintilla.

Third-party

(Non-selectable) third-party plugins are used to provide access to various third-party libraries:

	LLVM: a plugin to access LLVM (as well as Clang).

	QScintilla: a plugin to access QScintilla.

	Qwt: a plugin to access Qwt.

	SUNDIALS: a plugin to access CVODE, IDA and KINSOL solvers from the SUNDIALS library.

Widget

(Non-selectable) widget plugins are used to provide access to various ad hoc widgets:

	Editor: a plugin to edit and display text.

	EditorList: a plugin to handle issues in a text editor.

	Viewer: a plugin to visualise mathematical equations.

 Glossary

Glossary

	Clone

	Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in order to have a local copy of a repository to work in.

	Embedded workspace	Embedded workspaces

	A Mercurial concept that allows workspaces to be nested within other workspaces.

	Exposure	Exposures

	A publicly available page that provides access to and information about a specific revision of a workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s) contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed. CellML files for example are presented with options such as code generation and mathematics display, whereas FieldML models might offer a 3D view of the mesh.

	Fork

	A copy of the workspace which includes all the original version history, but is owned by the user who created the fork.

	Mercurial

	Mercurial [http://mercurial.selenic.com/] is a distributed version control system, used by the Physiome Model Repository software to maintain a history of changes to files in workspaces. See a tour of the Mercurial basics [http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html] for some good introductory material.

	Pull	Pulling

	The term used with distributed version control systems for the action of pulling changes from one clone of the repository into another. With PMR, this usually implies pulling from a workspace in the model repository into a clone of the workspace on your local machine.

	Push	Pushing

	The term used with distibuted version control systems for the action of pushing changes from one clone of the repository into another. With PMR, this usually implies pushing from a workspace clone on your local machine back to the workspace in the model repository, but could be into any other clone of the workspace. See a tour of the Mercurial basics [http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html] for some good introductory material.

	Python

	Python is a programming language that lets you work more quickly and integrate your systems more effectively. See http://python.org for all the details.

	Synchronize

	Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

	Workspace	Workspaces

	A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or directory in which files are stored, with the added feature of being version controlled by the distributed version control system called Mercurial [http://mercurial.selenic.com/].

 Supported platforms

Supported platforms

OpenCOR can be used on the following versions of Windows [http://windows.microsoft.com/], Linux [http://www.linux.com/] and OS X [http://www.apple.com/osx/].

Windows

OpenCOR is supported on the 32-bit and 64-bit versions of Windows XP [http://en.wikipedia.org/wiki/Windows_XP] and later.

Linux

	OpenCOR 0.1.x and 0.2: supported on both the 32-bit and 64-bit versions of Ubuntu [http://en.wikipedia.org/wiki/Ubuntu_(operating_system)] 12.04 LTS (Precise Pangolin) and later.

	OpenCOR 0.3: supported on both the 32-bit and 64-bit versions of Ubuntu [http://en.wikipedia.org/wiki/Ubuntu_(operating_system)] 14.04 LTS (Trusty Tahr) and later.

Note: in all cases, OpenCOR may also work with earlier versions of Ubuntu, as well as with other Linux distributions, but additional system libraries may be needed in the latter case.

OS X

	OpenCOR 0.1.x: supported on OS X [http://en.wikipedia.org/wiki/OS_X] 10.8 (Mountain Lion) and later.

	OpenCOR 0.2 and later: supported on Mac OS X [http://en.wikipedia.org/wiki/OS_X] 10.7 (Lion) and later.

 CellMLAnnotationView Plugin

CellMLAnnotationView Plugin

The CellMLAnnotationView plugin can be used to annotate CellML files. If you open a CellML file which does not contain any annotation, then it will look something like this:

[image: CellMLAnnotationView plugin: default view]
All the CellML elements which can be annotated are listed to the left of the view. If you right click on any of them, you will get a popup menu which you can use to expand/collapse all the child nodes, as well as remove the metadata associated with the current CellML element or the whole CellML file:

[image: CellMLAnnotationView plugin: context menu]

Annotate a CellML element

Say that you want to annotate the sodium_channel component. First, you need to select it:

[image: CellMLAnnotationView plugin: select a CellML element]
Next, you need to specify a BioModels.net qualifier [http://biomodels.net/qualifiers/]. If you do not know which one to use, click on the [image: applications-internet] button to get some information about the current BioModels.net qualifier:

[image: CellMLAnnotationView plugin: select a BioModels.net qualifier]
From there, go through the list of BioModels.net qualifiers until you find the one you are happy with. Here, we will use bio:isVersionOf:

[image: CellMLAnnotationView plugin: select bio:isVersionOf as a qualifier]
Now, you need to retrieve some possible ontological terms to describe the sodium_channel component. For this, you must enter a search term which in our case is going to be sodium channel (note: regular expressions [http://en.wikipedia.org/wiki/Regular_expression] are supported). As can be seen, OpenCOR returns 12 possible ontological terms:

[image: CellMLAnnotationView plugin: list of possible ontological terms]
A quick look through the list tells us that you might want to use the one for voltage-gated sodium channel complex. If you want to know more about the GO resource, you can click on its corresponding link:

[image: CellMLAnnotationView plugin: look up some resource information]
Similarly, if you want to know more about the GO identifier:

[image: CellMLAnnotationView plugin: look up some identifier information]
Now that you are happy with your choice of ontological term, you can associate it with the sodium_channel component by clicking on its corresponding [image: list-add] button:

[image: CellMLAnnotationView plugin: associate an ontological term with a CellML element]
As you will have seen, the ontological term you have just added cannot be added anymore, but it can be removed by clicking on its corresponding [image: list-remove] button or by using the context menu (see above).

Now, say that you also want to add the next ontological term. You can obviously do so by clicking on the corresponding [image: list-add] button, but you could also enter its resource-id duple, e.g. go/GO:0005248 (i.e. <resource>/<id>) in the term field. Indeed, OpenCOR will recognise this 'term' as being a a resource-id duple and will offer you to add its corresponding ontological term directly:

[image: CellMLAnnotationView plugin: directly associate an ontological term with a CellML element]

Unrecognised annotations

Annotations consist of RDF triples [http://www.w3.org/TR/rdf-concepts/#section-triples] which are made of a subject, a predicate and an object. OpenCOR recognises RDF triples which subject identifies a CellML element while it expects the predicate to be a BioModels.net qualifier [http://biomodels.net/qualifiers/] and the object an ontological term.

Ontological terms used to be identified using MIRIAM [http://www.ebi.ac.uk/miriam/main/mdb?section=use] URNs, but these have now been deprecated in favour of identifiers.org [http://www.identifiers.org/] URIs. OpenCOR recognises both, but it will only serialise annotations using identifiers.org URIs.

Now, it may happen that a file contains annotations that are not recognised by OpenCOR. In this case, OpenCOR will display the annotations as a simple list of RDF triples:

[image: CellMLAnnotationView plugin: unrecognised annotations]
If you ever come across a type of annotations which you think OpenCOR ought to recognise, but does not, then please do contact us [http://www.opencor.ws/user/contactUs.html].

 CellMLModelRepositoryWindow Plugin

CellMLModelRepositoryWindow Plugin

The CellMLModelRepositoryWindow plugin offers an interface to the CellML Model Repository [http://models.cellml.org]. By default, it lists all the CellML models found in the repository:

[image: CellMLModelRepositoryWindow plugin: default view]
The list can then be filtered. For example, if you enter Noble as a filter, you will get:

[image: CellMLModelRepositoryWindow plugin: filtered list of CellML files]
To click on any of the listed links will open the workspace for that model in your (default) web browser. From there, you can retrieve the latest exposure for that model.

 CellMLTools Plugin

CellMLTools Plugin

The CellMLTools plugin consists of various CellML [http://cellml.org]-related tools, which can be accessed through the Tools menu.

CellML File Export To...

These tools can be used to export a CellML model to various formats:

	CellML 1.0: to flatten a CellML 1.1 model.

	User-defined format: to export a CellML model to some user-defined format.

Note

The CellML 1.0 export is adapted from Jonathan Cooper's CellML 1.1 to 1.0 converter [http://www.cellml.org/tools/jonathan-cooper-s-cellml-1-1-to-1-0-converter/versionconverter-tar.bz2/view] and therefore has the same limitations.

 FileBrowserWindow Plugin

FileBrowserWindow Plugin

The FileBrowserWindow plugin offers a convenient way to access your physical files, remembering the folder or file that was selected when you last ran OpenCOR. By default, it will select your home directory:

[image: FileBrowserWindow plugin: default view]
As you would expect, to double click on a folder will expand its contents, as can be seen by double clicking on the Windows directory:

[image: FileBrowserWindow plugin: double clicking on a folder]
On the other hand, to double click on a file will result in it being opened in OpenCOR. The rendering of the file will depend on the current view being selected. In the case of the CellML Annotation view, it will look something like this:

[image: FileBrowserWindow plugin: double clicking on a file]
Folders and files can also be dragged from the File Browser window and dropped onto the File Organiser window.

Tool bar

[image: user-home] Go to the home folder

[image: go-up] Go to the parent folder

[image: go-previous] Go to the previous folder or file

[image: go-next] Go to the next folder or file

 FileOrganiserWindow Plugin

FileOrganiserWindow Plugin

The FileOrganiserWindow plugin allows you to organise your files in a virtual manner, i.e. independently of where they are physically located. Your virtual environment is remembered from one session to another and is originally empty:

[image: FileOrganiserWindow plugin: default view]
Now, say that you are working on a specific project. You might then want to create a (virtual) folder, which contains (a virtual link to) all the files you need for your project. For this, you first need to click on the [image: folder-new] button in the toolbar (or use the context menu). This will add a folder to your virtual environment:

[image: FileOrganiserWindow plugin: create a folder]
You can rename the folder as you wish, as well as create other (sub-)folders, if needed:

[image: FileOrganiserWindow plugin: create several (sub-)folders]
You can also move the (sub-)folders around by dragging and dropping them within your virtual environment, or delete an existing (sub-)folder by clicking on the [image: edit-delete] button in the toolbar (or by using the context menu):

[image: FileOrganiserWindow plugin: move/delete (sub-)folders]
Next, you might want to open the File Browser window, so you can start dragging and dropping files into your virtual environment (alternatively, you can use your system's file manager):

[image: FileOrganiserWindow plugin: add files]
As for folders, you can move and delete your (virtual) files:

[image: FileOrganiserWindow plugin: move/delete files]

Tool bar

[image: folder-new] Create a new folder

[image: edit-delete] Delete the current folder(s) and/or link(s) to the current file(s)

 HelpWindow Plugin

HelpWindow Plugin

The HelpWindow plugin provides some user documentation that looks as follows:

[image: HelpWindow plugin: default view]
The contents of the documentation is the same as the one that can be found in the user documentation [http://www.opencor.ws/user/index.html] section of the OpenCOR website [http://www.opencor.ws/]. This includes a menu that gets shown whenever you move your mouse pointer over the information icon (top right):

[image: HelpWindow plugin: context menu]
In addition to what is shown on the website, the HelpWindow plugin also displays special links, which when clicked send a command to OpenCOR. For example, open the current page both in OpenCOR and on the OpenCOR website [http://www.opencor.ws/user/plugins/miscellaneous/HelpWindow.html]. Now, if you check the bold text below, you will see that its contents is slightly different, depending on whether you are reading this in OpenCOR or from the OpenCOR website:

To open the About box, select the Help ‣ About... menu...

Tool bar

[image: go-home] Go to the home page

[image: go-previous] Go back

[image: go-next] Go forward

[image: edit-copy] Copy the selection to the clipboard

[image: zoom-original] Reset the size of the help page contents

[image: zoom-in] Zoom in the help page contents

[image: zoom-out] Zoom out the help page contents

[image: document-print] Print the help page contents

 RawCellMLView Plugin

RawCellMLView Plugin

The RawCellMLView plugin can be used to edit CellML [http://cellml.org/] files in their raw format using a text editor. If you open a file, it will look something like:

[image: RawCellMLView plugin: default view]
Besides using syntax highlighting, the text editor behaves in exactly the same way as the text editor in the Raw view.

The panel above the text editor is used to visualise mathematical equations in real-time. You just need the caret to be within a valid apply MathML [http://www.w3.org/Math/] block:

[image: RawCellMLView plugin: valid equation]
If the equation is not valid, a warning sign gets displayed:

[image: RawCellMLView plugin: invalid equation]
The equation viewer can be customised using its context menu:

[image: RawCellMLView plugin: customising the equation viewer]
The font size can thus be optimised, so that an equation can take as much space as possible when rendered. Subscripts are also supported (e.g. a_b will be rendered as ab), as are Greek symbols (i.e. alpha, beta, etc. are replaced with α, β, etc.) and digit grouping (e.g. 1000 will be rendered as 1,000). A rendered equation can also be copied to the clipboard for use in another program.

The panel below the text editor is used to list any CellML issue that results from trying to validate a CellML file:

[image: RawCellMLView plugin: validate a CellML file]
If the CellML file is valid, then a dialog box confirming its validity is displayed:

[image: RawCellMLView plugin: valid CellML file]
Otherwise, the bottom panel lists all the issues with the CellML file:

[image: RawCellMLView plugin: list of CellML issues]
To double click on an issue will get the text editor to navigate to the corresponding line.

 RawView Plugin

RawView Plugin

The RawView plugin can be used to edit text-based files. If you open a file, it will look something like:

[image: RawView plugin: default view]
The bluish line at the top is used to highlight the line that contains the caret, which line and column numbers can be found at the bottom left of the screen, together with the current editing mode (INS: insert, OVR: overwrite).

The size of the text can be increased and decreased by pressing Control-+ (or Control-=) and Control--, respectively. You can also change the size of the text by pressing Control and moving the mouse wheel up or down. To reset the font size, press Control-0.

[image: RawView plugin: increased font size]

[image: RawView plugin: decreased font size]
To change the size of the text will do so for all the files that use this view and will be remembered from one session to another.

Traditional editing features can be accessed through the Edit menu, various keyboard shortcuts and the context menu of the editor:

[image: RawView plugin: editing features through the Edit menu]

[image: RawView plugin: editing features through the context menu of the editor]
The find/replace feature can be activated by, for example, pressing Control-F (and hidden by pressing ESC), as can be seen at the bottom of the screen:

[image: RawView plugin: default find/replace feature]
As soon as you enter some text in the Find field, the view will jump to the first occurrence of that text. You can then search for the next or previous occurrence of that text by pressing F3 (or Control-G, depending on your operating system) and Shift-F3 (or Control-Shift-G), respectively. You can make the search case sensitive, look for whole words only and/or use a regular expression by selecting the requested option(s) from the drop-down menu to the left of the Find field:

[image: RawView plugin: detailed find/replace feature]
To replace some text, you can use the Replace with field. From there, use one of the Replace, Replace & Find and Replace All buttons at the bottom right of the screen.

 SingleCellView plugin

SingleCellView plugin

The SingleCellView plugin can be used to run CellML models which consists of either a system of ordinary differential equations [http://en.wikipedia.org/wiki/Ordinary_differential_equation] (ODEs) or differential algebraic equations [http://en.wikipedia.org/wiki/Differential_algebraic_equation] (DAEs). The system may be non-linear [https://en.wikipedia.org/wiki/Nonlinear_system].

Open a CellML file

Upon opening a CellML file, OpenCOR will check that it can be used for simulation. If it cannot, then a message will describe the issue:

[image: SingleCellView plugin: invalid CellML file]
Alternatively, if the CellML file is valid, then the view will look as follows:

[image: SingleCellView plugin: valid CellML file]
The view consists of two main parts, the first of which allows you to customise the simulation, the solver and the model parameters. The second part is used to plot simulation data. In the Parameters section, each model parameter has an icon associated with it to highlight its type:

	[image: voi]
	Variable of integration

	[image: constant]
	(Editable) constant

	[image: computedConstant]
	Computed constant

	[image: state]
	(Editable) state

	[image: rate]
	Rate

	[image: algebraic]
	Algebraic

Simulate an ODE model

To simulate a model, you need to provide some information about the simulation itself, i.e. its starting point, ending point and point interval. Then, you need to specify the solver that you want to use. The solvers available to you will depend on which solver plugins you selected, as well as on the type of your model (i.e. ODE or DAE). In the present case, we are dealing with an ODE model and all the solver plugins are selected, so OpenCOR offers CVODE [http://computation.llnl.gov/casc/sundials/description/description.html#descr_cvode], forward Euler [http://en.wikipedia.org/wiki/Euler_method], Heun [http://en.wikipedia.org/wiki/Heun's_method], Midpoint [http://en.wikipedia.org/wiki/Midpoint_method], and second- and fourth-order Runge-Kutta [http://en.wikipedia.org/wiki/Runge-Kutta_methods] as possible solvers for our model.

[image: SingleCellView plugin: ODE solvers]
Each solver comes with its own set of properties which you can customise. For example, if we select Euler (forward) as our solver, then we can customise its Step property:

[image: SingleCellView plugin: Forward Euler solver]
At this stage, we can run our model by pressing the F9 key or by clicking on the [image: media-playback-start] button. Then, or before, you can add a graph. All the model parameters are listed to the bottom-left of the view, grouped by components in which they were originally defined. To add a graph, right click on a model parameter and select against which other model parameter you want it to be plotted. For example, to create a graph for V (from the membrane component) against the variable of integration (i.e. time since the simulation properties are expressed in milliseconds):

[image: SingleCellView plugin: failed simulation]
You can get the information associated with a graph by double clicking on it:

[image: SingleCellView plugin: successful simulation]
The Model property is used to associate the graph with a particular CellML file. By default, it has a value of Current, which means that if you select another CellML file, then OpenCOR will try to associate the graph with it (the [image: task-attention] icon will be shown next to the check box, if it cannot, as well as next to the X and/or Y properties to highlight which model parameter(s) could not be found in the other CellML file). The [image: object-unlocked] icon indicates that the graph is not locked, i.e. its Model property has a value of Current, while the [image: object-locked] icon is used when a graph is specifically associated with a CellML file (resulting in a red trace rather than a blue one). The X and Y properties can be modified either by editing their value or by right clicking on them and selecting another model parameter from the context menu, which can also be used to add or remove a graph.

Back to the simulation, you can see that it failed with several model parameters having a value of nan (i.e. not a number). This is because the solver was not properly set up: its Step property is too big. If you set it to 0.01 milliseconds, reset all the model parameters (by clicking on the [image: view-refresh] button) and clear the simulation data (by clicking on the [image: trash-empty] button), and restart the simulation, then you get the following trace:

[image: SingleCellView plugin: CVODE solver]
The (roughly) same trace can also be obtained using the CVODE solver:

[image: SingleCellView plugin: pausing a simulation]
However, the simulation is so quick to run that we do not get a chance to see the progress of the simulation. Between the [image: trash-empty] and [image: list-add] buttons, there is a wheel which we can use to add a short delay between the output of two data points. Here, we set the delay to 13 ms. This allows us to rerun the simulation, after having reset the model parameters, and pause it at a point of interest:

[image: SingleCellView plugin: resuming a simulation]
Now, we can modify any of the model parameters identified by either the [image: state] or [image: constant] icon, but let us just modify g_Na_max (under the sodium_channel component) by setting its value to 0 milliS_per_cm2. Then, we resume the simulation and we can see the effect on the model:

[image: SingleCellView plugin: simulate a DAE model]
If you want, you can export all the simulation data to a comma-separated values (CSV) file. To do so, you need to click on the [image: text-csv] button. Alternatively, if you want to create other graphs, but do not want them on the same graph panel as the existing one, you can click on the [image: list-add] button to create a new graph panel:

[image: SingleCellView plugin: simulate a CellML 1.1 model]
You might have noticed that the bottom graph panel has a blue vertical line to its left. This is to indicate that it is the currently selected graph panel (a graph panel can be selected by clicking on it). Something else you might have noticed is that the graphs area is now empty. This is because there are currently no graphs associated with the graph panel. Just for illustration, you can create a graph to plot V (from the membrane component) against V' (also from the membrane component):

[image: SingleCellView plugin: simulate several models at once]
You can create as many graph panels (and graphs) as you want. The current graph panel or all the graph panels (but the top one) can be removed by clicking on the [image: list-remove] button.

Simulate a DAE model

To simulate a DAE model is similar to simulating an ODE model, except that OpenCOR only offers one DAE solver (IDA [http://computation.llnl.gov/casc/sundials/description/description.html#descr_ida]) at this stage:

[image: SingleCellView plugin: simulate several models at once]

Simulate a CellML 1.1 model

So far, we have only simulated CellML 1.0 models, but we can also simulate CellML 1.1 models, i.e. models which import units and/or components from other models:

[image: SingleCellView plugin: simulate several models at once]

Simulate several models at the same time

Each simulation is run in its own thread which means that several simulations can be run at the same time. Simulations running in the 'background' display a small progress bar in the top tab bar while the 'foreground' simulation uses the main progress bar at the bottom of the view:

[image: SingleCellView plugin: simulate several models at once]

Plotting area

The plotting area offers several features that can be activated by:

	
	Zooming in/out:

	
	Holding the right mouse button down, and moving the mouse to the bottom-right/top-left to zoom in/out; or

	Moving the mouse wheel up/down; or

	Using the context menu.

	
	Resetting the zoom level:

	
	Double-clicking on the left mouse button; or

	Using the context menu.

	
	Zooming into a region of interest:

	
	Pressing Ctrl and holding the right mouse button down, and moving the mouse around.

	
	Panning:

	
	Holding the left mouse button down, and moving the mouse around.

	
	Showing the coordinates of any point:

	
	Pressing Shift and holding the left mouse button down, and moving the mouse around.

	
	Copying the contents of the plotting area to the clipboard:

	
	Using the context menu.

Tool bar

	[image: media-playback-start]
	Run the simulation

	[image: media-playback-pause]
	Pause the simulation

	[image: media-playback-stop]
	Stop the simulation

	[image: view-refresh]
	Reset all the model parameters

	[image: trash-empty]
	Clear the simulation data

	[image: list-add]
	Add a graph panel

	[image: list-remove]
	Remove the current graph panel or all the graph panels

	[image: text-csv]
	Export the simulation data to CSV

 Musculoskeletal Atlas Project (MAP) Client

Musculoskeletal Atlas Project (MAP) Client

The Musculoskeletal Atlas Project Client (MAP Client [https://simtk.org/home/map]) is a cross-platform framework for managing workflows. A workflow consists of a number of connected workflow steps. The MAP Client framework is a plugin-based application where the plugins are workflow steps.

The MAP Client framework has a number of tools for creating, managing and sharing workflows, workflow steps and the outputs generated from the workflow steps. It is an application written in Python and based on Qt, the cross-platform application and UI framework.

One of the central ideas for the MAP Client is to allow users to easily develop and share their own plugins/workflow steps. The requirements for developing a workflow step have been kept as low as practicable allowing creators to concentrate on the practical implementation of the workflow step rather than concerning themselves with conforming to the plugin API. The Plugin Wizard tool greatly simplifies the first stage in creating a workflow step and generates a considerable amount of the skeleton code required.

Another of the central ideas for the MAP Client is making the output from the workflow steps available and searchable to others. To achieve this the MAP Client uses the Physiome Model Repository (PMR). PMR has been designed to provide data upload, storage and distribution capabilities, despite the name PMR is not just for models but for any data that users wish to track development changes of. The MAP Client has the PMR Tool to make use of this facility. Using the PMR Tool we can make sure the important data that a workflow produces is secure and available into the future.

A feature of having a plugin based framework is that it is possible for groups to share their workflows and workflow steps without requiring a lot of extraneous software. Also having users create and share their plugins increases the flexibility of the MAP Client and distances users from relying on an external team of developers. To further the reach of workflow steps if they are made to be as general as possible we can increase the re-usability and shareability for other users to use in their own work or alternatively extend to fit their purposes.

Further details on the MAP Client are available in the documents listed below.

	MAP Client Installation and Setup Guide

	MAP Features Demonstration

	MAP Plugins

	MAP Plugin Creator Wizard

	MAP Tutorial - Create Workflow

	MAP Tutorial - Create Plugin

	Glossary

	Appendix A - Generating html documentation

 MAP Client Installation and Setup Guide

MAP Client Installation and Setup Guide

This document describes how to install and setup the MAP Client software for use on your machine. The MAP Client software is a Python application that uses the PySide Qt library bindings.

The Installation section details getting the MAP Client and it's dependencies installed on your system. There are two main ways of getting the MAP Client installed on your operating system. This document will cover both of those methods. For users and plugin developers the suggested method is to Install Using Pip, for developers of the MAP Client framework the suggested method is to Install Using Bazaar.

The Install Using Pip method is covered first followed by the instructions on how to Install Using Bazaar. For most operating systems Python is already installed but for some, most notably Windows based operating systems, it is not. For instructions on installing Python for Windows based operating systems see the Installing Python on Windows section.

The Setup section details getting the MAP Client setup with external plugins.

Installation

Install Using Pip

Pip is a tool for installing and managing Python packages. It is particularly suited for the installation and management of source distributions of Python software, of which the MAP Client is one. The downside to using pip is that it is not great for installing binary packages, and there is one such binary package that the MAP Client requires, namely PySide. This creates something of a problem for the installation of the MAP Client. To make the installation via pip as easy as possible we must do some of the installation manually.

The manual part of the installation concerns installing PySide. For PySide we need to first install it, for Ubuntu:

sudo apt-get install python-pyside pyside-tools

For OSX download the appropriate PySide binaries from the qt-project [http://qt-project.org/wiki/PySide_Binaries_MacOSX] and follow the instructions in the dmg. For Windows download the PySide installer binaries from the qt-project [http://qt-project.org/wiki/PySide_Binaries_Windows], make sure the binaries for PySide match the installed Python you have and follow the instructions in the installer.

Then we need to let pip know that PySide is installed, this takes the form of creating an empty file called 'PySide-X.Y.Z.egg-info' in the site-packages or dist-packages directory, depending on where your PySide libraries were installed. The X.Y.Z are given values that match the actual version of PySide you have. For example on Ubuntu I would create the file:

sudo touch /usr/lib/python2.7/dist-packages/PySide-1.1.2.egg-info

and on Windows I would create the file:

echo pyside > c:\Python27\Lib\site-packages\PySide-1.1.2.egg-info

and on Mac OSX I would create the file:

sudo touch /somewhere/PySide-1.1.2.egg-info

At this point we can hand over to pip to finish the installation for us, if you don't have pip installed then read the section on Installing Pip. The command for installing the MAP Client is:

pip install mapclient

The MAP Client application should now be installed on your system. It can be launched from the command line with this command:

mapclient

which should result in an application window similar to that shown below.

[image: ../_images/map_client_barebones.png]

The MAP Client relies heavily on plugins to do anything interesting, you can either create these yourself or add already available ones to your application by downloading them and using the Plugin Manager Tool in the MAP Client, read the documents MAP Features Demonstration and MAP Plugin Creator Wizard to learn more.

Install Using Bazaar

Bazaar is a distributed revision control tool. It is used by Launchpad for open source project hosting where the MAP Client source code is situated. To get bazaar use you systems package management system to install it. If you are on windows then download and install it from:

http://wiki.bazaar.canonical.com/Download

and checkout the source code and manually setup the required software

Installing Pip

Pip is a tool for installing and managing Python packages. It relies on setuptools to work, first you must install setuptools which has very good instructions available here

https://pypi.python.org/pypi/setuptools#installation-instructions

Next test to make sure that easy_install is available, open a command window and issue the command:

easy_install --version

If this command prints out the version of setuptools you have installed then you can install pip with the command:

easy_install pip

otherwise you will probably need to adjust the PATH system variable so that the easy_install application is available.

Installing Python on Windows

This section is for setting up Python on Windows as other operating systems supported by the MAP Client already have Python available. The MAP Client framework is written in Python and is designed to work with Python 2 and Python 3. The MAP Client framework is tested against Python 2.6, Python 2.7 and Python 3.3 and should work with any of these Python libraries.

With a Python installation for windows there are a number of choices to make:

	Which version?

	32-bit or 64-bit?

The choices made here must be the same for PySide. The current recommendation is to choose the 64 bit version of the latest Python 2.7 binary release. Current versions of Python are available from:

http://www.python.org/download/

Downloaod an msi installer that matches your choices and follow the onscreen prompts. Make sure to add the Python and Python\Scripts folders to your system PATH.

Setup

External Plugins

The installation of external MAP Client plugins is a two step process. The first step is to download the plugins onto the local file system and the second step is to use the MAP plugin manager to get the MAP Client to load them.

There is a github orginisation [https://github.com/mapclient-plugins] which has a collection of MAP Client plugins. Some of the plugins here are more advanced and have a dependency on the Zinc and PyZinc libraries. To use these plugins please read the Zinc and PyZinc section on how to setup them up.

Zinc and PyZinc

Zinc [http://physiomeproject.org/software/zinclibrary/] is an advanced field manipulation and visualisation library and PyZinc [http://physiomeproject.org/software/pyzinc/] provides Python bindings to the Zinc library. The MAP client is able to make use of Zinc for advanced visualisation and image processing steps through PyZinc. Binaries for Zinc and PyZinc are available from here [http://physiomeproject.org/software/zinclibrary/download] and here [http://physiomeproject.org/software/pyzinc/download] for Linux, Windows, and OS X.

First install Zinc, for Ubuntu download the debian package and install it with the folowing command:

sudo dpkg -i zinc-X.Y.Z-x86_64-Ubuntu-10.04.4-LTS.deb

for Windows download the executable installer and follow the onscreen instructions. For Mac OSX download the dmg and follow the onscreen instructions. Archived versions exist for installing the Zinc library manually if you prefer.

To get PyZinc installed, follow these steps:

	Download the PyZinc archive that matches the Zinc library already downloaded.

	Extract the downloaded PyZinc archive (unzip on Windows, tar for Ubuntu and Mac OSX).

	In a command window, make the current directory the directory where PyZinc was extracted.

	Execute the following command: python setup.py install.

note:

The Zinc and PyZinc packages must have the same version
number.

 MAP Features Demonstration

MAP Features Demonstration

Section author: Hugh Sorby

Note

MAP [https://simtk.org/home/map] is currently under active development, and this document will be updated to reflect any changes to the software or new features that are added. You can follow the development of MAP at the launchpad project [http://launchpad.net/mapclient].

This document details the features of MAP [https://simtk.org/home/map], a cross-platform framework for managing workflows. MAP is a plugin-based application that can be used to create workflows from a collection of workflow steps.

In this demonstration is based on version 0.9.0 of MAP, available from the project downloads [https://launchpad.net/mapclient/+download]. Directions for installing MAP and getting the MAP plugins are available in the MAP Client Installation and Setup Guide.

In this demonstration we will cover the features of MAP. We will start with a quick tour and then create a new workflow that will help us segment a region of interest from a stack of images.

Quick Tour

When you first load MAP, it will look something like this:

[image: ../_images/map_client_gui.png]

In the main window we can see three distinct areas that make up the workflow management side of the software. These three areas are the menu bar (at the top), the step box (on the left) that contains the steps that you can use to create your workflow and the workflow canvas (on the right) an area for constructing a workflow.

In the Step box we will only see two steps, this is because we have only loaded the default Steps and not loaded any of the external plugins that MAP can use.

Menu Bar

The Menu bar provides a selection of drop down menus for accessing the applications functions. The File menu provides access to opening, importing, closing workspaces as well as quitting the application. The Edit menu provides access to the undo/redo functionality. The Tools menu provides access to the Plugin Manager tool, Physiome Model Repository (PMR) tool and the Annotation tool. The Help menu provides access to the about box which contains information on contributors and the license that the MAP application is released under.

The 'New' menu has two sub-menus: 'New/PMR Workflow' and 'New/Workflow'. The PMR Workflow menu command will create a new workflow in the chosen directory and use Mercurial to track changes to your project. When saving the workflow the contents of the project will be transferred to PMR via Mercurial, this transfer is managed by the application. For more information on the benefits and use of PMR please read the documentation available at read-the-docs [http://abibook.readthedocs.org/en/latest/PMR/index.html] .

[image: ../_images/select_workflow_directory_1.png]

The Workflow menu command will create a new workflow on your local disk in the selected directory.

Step Box

The Step box provides a selection of steps that are available to construct a workflow from. The first time we start the program only the default plugins are available. To add more steps we can use the Plugin Manager tool. To use a step in our workflow we drag the desired step from the step box onto the workflow canvas.

Workflow Canvas

The workflow canvas is where we construct and edit our workflow. We do this by adding the steps to the workflow canvas from the step box that make up our workflow. We then make connections between the workflow steps to define the complete workflow.

When a step is added to the workflow the icon which is visible in the Step box is augmented with visualisations of the Steps ports and the steps configured status. The annotation of the steps ports will show when the mouse is hovered over a port. The image below shows the Image Source step with the annotation for the port displayed.

[image: ../_images/step_with_port_info_displayed_1.png]

Tools

MAP currently has three tools that may be used to aide the management of the workflow. They are the Plugin Manager tool, the Physiome Model Repository (PMR) tool and the Annotation tool. For a description of each tool see the relevant sections.

Plugin Manager Tool

The plugin tool is a simple tool that enables the user to add or remove additional plugin directories. MAP comes with some default plugins which the user can decide to load or not by checking or unchecking the check box (1) at the bottom of the dialog. External directories are added with the add directory button (2). Directories are removed by selecting the required directory in the Plugin directories list (3) and clicking the remove directory button (4). To reload plugins from the current plugin directories use the reload button (5).

Note

The reload will only reload the plugins from the current plugin directories, this will not include any changes to the directories in the current dialog. To confirm changes and load plugins from the plugin directories listed in the plugin manager click the OK button (6).

[image: ../_images/plugin_manager_2.png]

Whilst additions to the plugin path will be visible immediately in the Step box deletions will not be apparent until the next time the MAP Client is started. This behaviour is a side-effect of the Python programming language.

Physiome Model Repository (PMR) Tool

The PMR tool uses webservices and OAuth to communicate between itself (the consumer) and the PMR website (the server). Using this tool we can search for and find suitable resources on PMR.

The PMR website uses OAuth to authenticate a consumer and determine consumer access privileges. Here we will discuss the parts of OAuth that are relevant to getting you (the user) able to access resources on PMR. Please read the section Simplified OAuth Primer for a quick overview of OAuth authentication.

If you want the PMR tool to have access to privileged information (your non-public workspaces stored on PMR) you will need to register the PMR tool with the PMR website. We do this by clicking on the register link as shown in the figure below. This does two things: it shows the Application Authorisation dialog; opens a webbrowser at the PMR website. [If you are not logged on at the PMR website you will need to do so now to continue, instructions on obtaining a PMR account are available here XXXXX]. On the PMR website you are asked to either accept or deny access to the PMR tool. If you allow access then the website will display a temporary access token that you will need to copy and paste into the Application Authorisation dialog so that the PMR tool can get the permanent access token.

[image: ../_images/pmr_tool_1.png]

Simplified OAuth Primer

In OAuth we have three players the server, the consumer and the user. The server is providing a service that the consumer wishes to use. It is up to the user to allow the consumer access to the servers resources and set the level of access to the resource. For the the consumer to access privileged information of the user stored on the server the user must register the consumer with the server, this is done by the user giving the consumer a temporary access token. This temporary access token is then used by the consumer to finalise the transaction and acquire a permanent access token. The user can deny the consumer access at anytime by logging into the server and revoking the permanent access token.

Annotation Tool

Note

Please note that the annotation tool is currently under development, this tool in it's current form as documented here does not integrate well with the latest version of PMR. This version of the annotation tool has been marked as deprecated

The Annotation tool is a very simple tool to help a user annotate the Workflow itself and the Step data directories that are linked to PMR. At this stage there is a limited vocabulary that the Annotation tool knows about, but this is intended to be extended in coming releases. The vocabulary that the annotation is aware of is available in the three combo-boxes near the top of the dialog.

[image: ../_images/top_annotation_1.png]

The main part of the Annotation tool shows the current annotation from the current target.

[image: ../_images/main_annotation_1.png]

In the above image we can see the list of annotations that have been added to the current target. This is a simplified view of the annotation with the prefix of the terms removed for clarity.

 MAP Plugins

MAP Plugins

Section author: Hugh Sorby

The Plugin lies at the heart of the MAP framework. The key idea behind the plugins is to make them as simple as possible to implement. The interface is defined in documentation and the plugin developer is expected to adhere to it. The framework leaves the responsibility of conforming to the plugin interface up to the plugin developer. The plugin framework is based on Marty Alchin's [1] article on a plugin framework for Django. The plugin framework is very lightweight and requires no external libraries and can be made to work with Python 2 and Python 3 simultaneously.

Workflow Step

The Workflow Step is the basic item that a plugin developers need to place their software within. A workflow step can be of any size and complexity. Although it must adhere to the plugin design to work properly with the application. Every step that wishes to act like a Workflow Step must derive itself from the Workflow step mountpoint. The Workflow step mountpoint is the interface between the application and the plugin. The Workflow step mountpoint can be imported like so:

from mapclient.mountpoints.workflowstep import WorkflowStepMountPoint

A skeleton step is provided as a starting point for the developer to create their own workflow steps. The skeleton step is actually a valid step in its own right and it will show up in the Step box if enabled. However the skeleton step has no use other than as an item to drag around on the workflow area. The skeleton step is discussed below, before that the plugin interface itself is discussed.

Plugin Interface

The plugin interface is the layer between the application and the developers plugin. The plugin interface is not defined by contract as we so often see in Java. But rather the plugin interface is defined by documentation. This puts the burden of the specification on the documentation and the conformity of the specification on the developer. The underlying theory is that the developer is able to follow the specification without the application having to do rigourous checks to make sure this is the case. The phrase 'If it walks like a duck' is often used.

In this section the specification of the Workflow step plugin interface is given. It is then upto the developer to make sure their plugin behaves like one.

The details of the plugin interface are provided in the documentation of the source code in the relevant source file and additionally here for easy reference. The documentation provided with the source code is very direct with little explanation the following documentation provides a bit more explanation and discussion on the various aspects of the plugin interface. The documentation provided here should be considered the slave documentation and the documentation provided with the source code as the master documentation.

There are essentially, what may be considered, three different levels of the plugin design.

	The Musts

	The Shoulds

	The Coulds

Creating a workflow step that satisifies the musts will create an actual workflow step that can be added to the workflow area and interacted with. But it won't be very useful. Satisfying the shoulds will usually be sufficient for the very simplest of steps. Simple steps are for instance ones that provide images, or location information for data. Doing some of the coulds will create a much more interesting step.

The requirements for creating a step have been kept as simple as possible, this is to allow the developer a quick route into the development of the step content.

The following three sections discuss these three levels in more detail.

A Step Must

	The plugin must be derived from the WorkflowStepMountPoint class defined in the package mapclient.mountpoints.workflowstep

	Accept a single parameter in it's __init__ method.

	Define a name for itself, this must be passed into the initialisation of the base class.

	Define the methods

def configure(self):
 pass

def getIdentifier(self):
 pass

def setIdentifier(self, identifier):
 pass

def serialize(self, location):
 pass

def deserialize(self, location):
 pass

A Step Should

	Implement the configure method to configure the step. This is typically in the form of a dialog. When implementing this function the class method self._configuredObserver() should be called to inform the application that the step configuration has finished.

	Implement the getIdentifier/setIdentifier methods to return the identifier of the step.

	Implement the serialize/deserialize methods. The steps should serialize and deserialize from a file on disk located at the given location.

	Define a class attribute _icon. That is of the type QtGui.QImage.

	Information about what the step uses and/or what it provides. This is achieved through defining ports on the step.

A Step Could

	Implement the method 'setPortData(self, index, dataIn)' if it uses some information from another step.

	Implement the method 'getPortData(self, index)' if it was providing some information to another step.

	Implement the method 'execute(self)' If a step implements the 'execute(self)' method then it must call '_doneExecution()' when the step is finished.

	Define a category using the '_category' attribute. This attribute will add the step to the named category in the step box, or it will create the named category if it is not present.

	Set a widget as the main widget for the MAP Client application. Calling '_setCurrentWidget(step_widget)' with a widget passed as a parameter will set that widget to the main widget for the MAP Client application. The widget will be removed when '_doneExecution()' is called.

Pre-defined Step Attributes

A step has a number of pre-defined attributes with default values, they are:

	self._name = name

	self._location = location

	self._category = 'General'

	self._ports = []

	self._icon = None

	self._configured = False

The '_name' and '_location' attributes are passed in to the '__init__' method of the mount point. The '_category' attribute can be used to group steps in the step box. By default a step has no ports and at least one port must be defined before it can be used in a workflow. If the '_icon' attribute is not defined then a default icon is supplied. The '_configured' property is set to False initially as most steps will not be configured in their initial state.

Pre-defined Step Methods

A step has a number of pre-defined methods, they are:

	
	execute(self)

	A method that gets called when execution passes to this step.

	
	getPortData(self, index)

	A method that returns the object that is defined by the port for the given index of the step

	
	setPortData(self, index, dataIn)

	A method that sets the ports data for the given index.

	
	configure(self)

	A method called by the framework to inform the step that it needs to follow it's configuration procedure.

	
	isConfigured(self)

	A method to return the value of '_configued'. In most cases this method will not
need to be overridden.

	
	_configuredObserver

	A method to call to let the framework know that the step configuration has finished.

	
	_identifierOccursCount

	A method to call to determine the number of identifiers with the given value. This method can be used to decide whether the current identifier is unique across the workflow.

	
	addPort

	Adds a port to the step, the port is defined using an RDF triple. See the
Ports section for more information.

	
	getName(self)

	Returns the '_name' attribute if it is set otherwise returns the class name. In most cases this method will not
need to be overridden.

	
	deserialize(self, location)

	Must be implemented in the plugin otherwise an exception is raised.

	
	serialize(self, location)

	Must be implemented in the plugin otherwise an exception is raised.

	
	_setCurrentWidget(step_widget)

	Set widget 'step_widget' to the main widget for the framework.

	
	_doneExecution()

	Inform the framework that the step has finished it's task.

	
	registerDoneExecution(self, observer)

	A method used by the framework to set the callable when execution is done. This method should not be overwritten.

	
	registerOnExecuteEntry(self, observer, undoRedoObserver)

	A method used by the framework to set a callable to set up the step for execution. This method should not be overwritten.

	
	registerConfiguredObserver(self, observer)

	A method used by the framework to set a callable for notifying when the step has been configured. This method should not be overwritten.

	
	registerIdentifierOccursCount

	A method used by the framework to set a callable for determining the number of times the given identifier occurs in the current workflow. This method should not be overwritten.

Ports

A port is a device to specify what a workflow step provides or uses. A port is described using Resource Description Framework (RDF) triples. The port description is used to determine whether or not two ports may be connected together.
One port can either use or provide one thing. A single port must not both provide a thing and use a thing. Ports are ordered by entry position.

A port is defined with the subject of http://physiomeproject.org/workflow/1.0/rdf-schema#port and it can be defined with a property or characteristic as either providing (http://physiomeproject.org/workflow/1.0/rdf-schema#provides) or using (http://physiomeproject.org/workflow/1.0/rdf-schema#uses) an object. What that object is is defined by the step, for example the image source step defines the following port:

(http://physiomeproject.org/workflow/1.0/rdf-schema#port, http://physiomeproject.org/workflow/1.0/rdf-schema#provides, http://physiomeproject.org/workflow/1.0/rdf-schema#images)

Any step that understands the http://physiomeproject.org/workflow/1.0/rdf-schema#images object can define it's own port that uses this object. Ports are added to a step by using the 'addPort(self, triple)' method from the base class.

Skeleton Step

The skeleton step satisfies the musts of the plugin interface. It is a minimal step and it is set out as follows.

A Python package with the step name is created, in this case 'skeletonstep', in the module file we add the code that needs to be read when the plugins are loaded.

The module file performs four functions. It contains the version information and the authors name of the module. For instance the skeleton step has a version of '0.1.0' and authors name of 'Xxxx Yyyyy'. It adds the current directory into the Python path, this is done so that the steps python files know where they are in relation to the python path. It also (optionally) prints out a message showing that the plugin has been loaded successfully. But the most important function it performs is to call the python file that contains the class that derives from the workflow step mountpoint.

The 'SkeletonStep' class in the skeletonstep.step package is a very simple class. It derives from the 'WorkflowStepMountPoint', calls the base class with the name of the step, accepts a single parameter in it's init method and defines the five required functions to satisfy the plugin interface.

When enabled the skeleton step will be a fully functioning step in the MAP Client.

References

[1] http://martyalchin.com/2008/jan/10/simple-plugin-framework/ Marty Alchin on January 10, 2008

 MAP Plugin Creator Wizard

MAP Plugin Creator Wizard

Section author: Hugh Sorby

Note

MAP [https://simtk.org/home/map] is currently under active development, and this document will be updated to reflect any changes to the software or new features that are added. You can follow the development of MAP at the launchpad project [http://launchpad.net/mapclient].

The plugin lies at the heart of the MAP framework and the Plugin Creator Wizard creates skeleton plugins conforming to the MAP framework plugin interface. The Plugin Creator Wizard assists with the initial plugin creation allowing the plugin developer to concentrate on implementing the plugins task. For basic familiararity with the MAP Client please read the feature demonstration document MAP Features Demonstration.

For more detailed information on the plugin interface read the MAP Plugins document, this document defines the plugin interface that the new plugin must adhere to.

The Plugin Creator Wizard takes the user through a series of pages/dialogs that user fills out as suits their needs. The pages and a description about the elements in each page is given below. To move from one page to the next use the 'next' button at the bottom of the page, for some pages the 'next' button is only available once the page is complete. If the 'next' button is not available for a page it will be because at least one of the pages required fields is incomplete. Required fields that are incomplete will be marked with a small cross icon ([image: cross icon]). Once all the required fields are complete the 'next' button will become available, or the 'finish' button in the case of the last page/dialog.

Introduction Page

The introduction page contains a short welcome message and a paragraph on the Plugin Creator Wizards purpose.

[image: ../_images/plugin_wizard_introduction_1.png]
Figure: The introduction page.

Identification Page

The identification page sets the name for the Workflow step, the Python package name and optionally the step icon. The Workflow step name can be set in the text box (1). As a recommendation Workflow step names should be defined in camel case as this name will be given to a class, spaces between words are acceptable however. The Workflow step name is visible in the Step box when active in the application so a descriptive name will aide users. The 'cross' icon (6) indicates that the entry for the step name is not valid. When a valid step name has been entered in the text box the 'cross' icon will be removed. Examples of valid step names are: 'Image Source', 'Point Cloud Serializer' and 'Segmentation'.

The package name for the step will be automatically derived from the step name and set into the package name text box (2). The wizard will make changes so that the package name conforms to the PEP8 guidelines for Python. The wizard will also append the text 'step' to the package name. However if the default name is unsatisfactory the package name can be edited directly and given an alternative name. The matching package names for the examples given above would be: 'imagesourcestep', 'pointcloudserializerstep' and 'segementationstep'.

An icon may be specified using the icon text box (3), the icon file may be chosen from the file system using the file chooser button (4). When an icon is specified it will be copied into the created skeleton step and be made available as a Qt resource. The suggested size of the icon is that it should be around 128px by 128px.

[image: ../_images/plugin_wizard_identify_1.png]
Figure: The identification page.

The step icon is an important part of the Workflow step as it is used to identify it graphically on the Workflow canvas. The default icon displays the step name across the icon to help differentiate it from other steps with no icon specified. A preview of the step icon (5) is shown so that you can see how it will look in the application.

Note

The PySide resource compiler application 'pyside-rcc' is required when choosing an icon image from the file system

Note

When a 'cross' icon appears on any page of the wizard it is used to indicate that the current field is not valid. When a field on a page is not valid the wizard cannot be progressed or finished. Therefore the 'cross' icon also indicates which fields require modification before the wizard can be continued.

Ports Page

The ports page sets up the ports for the step. To add a port use the 'Add' button (1). This will create an entry in the port list (2) with a default type of 'provides' and an empty object. A port can either provide or use a given object. The object should be uniquely identified using a namespace prefix, for example 'http://my.example.org/1.0/workflowstep'.

[image: ../_images/plugin_wizard_ports_1.png]
Figure: The ports page.

To remove a port, select an entry in the port list (2) and click the 'Remove' button (3).

For one port to be connected to any other the objects of both ports must match. The match is a determination of object compatibility (currently this is just a simple string matching test). Additionally to this one port must be the provider and the other the user (the order that the connection is made in when using the MAP Client is important). In summary the second port must use the object that the first port provides.

Example

As an example imagine that I wish to define a port that uses images. The images object that my step uses is particular class that I have defined. To create my port I would add a port using the 'Add' button [plugin wizard ports (1)]. Then select the 'uses' type from the drop down combo box in the type column.

[image: ../_images/plugin_wizard_ports_type_1.png]
Figure: Select the type of port using the drop down combo box.

Because my images class is of my own design I give it a unique name by prefixing it with a namespace. The namespace I use is 'http://my.example.org/1.0/workflowstep'. So to finish defining my port for using images, in the object column I enter the following text 'http://my.example.org/1.0/workflowstep#images'. The finished port definition should look like this.

[image: ../_images/plugin_wizard_ports_definition_1.png]
Figure: An example port definition for using a users proprietary images object.

Configuration Page

The configuration page can help setup the configuration dialog for the step. The 'Identifier' check box (1) will add standard code to the step to set up the getIdentifier/setIdentifier methods in the step, it will also add an entry to the 'ConfigurationDialog' and validate the identifier. It is highly recommended that the 'Identifier' check box is checked. Use the 'Add' button (2) to add a configuration parameter to the configuration list (3). The configuration list has a 'Label' column (4), the value entered here will become a label on the configuration dialog. The 'Default Value' column (5) will be used to set the default value for the corresponding label. Edit the values in this list as appropriate. The 'Remove' button (6) can be used to delete the selected rows. The configuration parameters entered will be used in generating a configuration dialog.

[image: ../_images/plugin_wizard_configuration_1.png]
Figure: The configuration page.

Note

The PySide ui compiler application 'pyside-uic' is required when using the wizard to generate a step which has at least one configuration parameter.

Miscellaneous Page

The miscellaneous page sets a number of properties that are not important to the function of the step. The author name(s) for the step can be set in the text box (1). The author's name appears when the step plugin is loaded and is not seen or used anywhere else. The category for the step can be set in the text box (2). The category determines the group that the step appears in in the Step Box of the application.

[image: ../_images/plugin_wizard_misc_1.png]
Figure: The miscellaneous page.

Output Page

The output page sets the directory where the skeleton step will be generated. The output directory can be set in the text box (1), or selected from the file system using the directory chooser button (2). The 'cross' icon (3) indicates that the current directory entry is not a directory that can be written into. The output directory specified in (1) must be an existing directory that you have the ability/permission to write to before the wizard can be successfully finished.

[image: ../_images/plugin_wizard_output_1.png]
Figure: The output page.

Generation

When the wizard has been completed, the skeleton step will be generated in the chosen directory. To load the skeleton step use the Plugin Manager to add the chosen directory into the list of plugin directories or use the Reload button if the new skeleton step is in an existing plugin directory.

 MAP Tutorial - Create Workflow

MAP Tutorial - Create Workflow

Section author: Hugh Sorby

Note

MAP [https://simtk.org/home/map] is currently under active development, and this document will be updated to reflect any changes to the software or new features that are added. You can follow the development of MAP at the launchpad project [http://launchpad.net/mapclient].

This document details takes the reader through the process of creating a workflow from existing MAP plugins. Having a read through the MAP Features Demonstration is a good way to become familiar with the features of the MAP application.

Getting Started

To get started with MAP we need to create a new workflow. To do this we use File -> New -> Workflow menu option (Ctrl-N shortcut). This option will present the user with a directory selection dialog. Use the dialog to select a directory where the workflow can be saved. Once we have chosen a directory the step box and workflow canvas will become enabled.

To create a meaningful workflow we will need to use some external plugins. To load these plugins we will use the Plugin Manager tool. The Plugin Manager tool can be found under the Tools menu. Use the Plugin Manager to add the directory location of the MAP plugins. After confirming the changes to the Plugin Manager you should see a few new additions to the Step box.

Creating the Workflow

To create a workflow we use Drag 'n' Drop to drag steps from the Step box and drop the step onto the workflow canvas. When steps are first dropped onto the canvas they show a red gear icon to indicate that the step is not configured. At a minimum a step requires an identifier to be set before it can be used.

Drag the steps Image Source, Data Store and Automatic Segmenter onto the workflow canvas. All the steps will show a red gear, except the 'Automatic Segmenter' step, this red gear icon indicates that the step needs to be configured. To configure a step we can either right click on the step to bring up a context menu from which the configure action can be chosen or simply click the red gear directly. See the relevant section for the configuration of a particular step.

Note

When configuring a step you are asked to set an identifier. The identifier you set must unique within the workflow and it must not start with a '.'.

Configuring the Image Source Step

The image source step requires a unique identifier for the step to be set. It also requires either a location on the local disk where the image data is located or a PMR workspace url from which the image data may be downloaded. Here we will show how to configure the Image Source step with images that have been stored in a workspace on PMR.

This step requires a unique id to be manually set. The id is used to create a file containing the step configuration information. This id for the Image Source step is also used to create a default directory under the workflow project directory if required. Once a valid identifier is entered the red highlight around the edit box will disappear.

This step configuration makes use of the PMR search widget which gives us the ability to search available workspaces on PMR. In the image source step configuration dialog seen in Figure 1 we can see that there is a place to set a unique identifier for the step and also two tabs, one tab is for setting the image dataset location on the local disk and the other tab is for searching PMR workspaces for image data. We will leave the local disk edit box on the local file system tab empty and allow the configuration to set the default location for us.

[image: ../_images/image_configureblank.png]
Figure 1: Image source step configuration dialog.

Set the identifer edit box to bv_images and select the Physiome Model Repository tab so that we can search PMR for our images. On this tab we see
We are going to conduct an ontological term [2] search for our images, we are looking for some images that show an anyeurism in the anterior communicating artery. To do this we can start entering the text anterior communicating artery into the search term edit box [3], when we pause in our typing the dialog will query the PMR OWL terms for suitable matches. We will see results similar to what is shown in Figure 3, we can click on the matching term in this list and the correct reference will be added to the search term edit box [3] for us.

[image: ../_images/image_configurepmr.png]
Figure 2: PMR search tab, [1] Workspace url, [2] Search type combobox, [3] Search term, [4] Search button, [5] Search results.

[image: ../_images/image_owltermscompleter.png]
Figure 3: PMR OWL terms.

With the correct term in place we can click the search button to return matching results from PMR. We will get back a single result Blood Vessel in MR Images. When we select this result in the search results list [5] the url for the workspace will be loaded into the workspace url edit box [1]. We should now have the dialog looking similar to Figure 4.

[image: ../_images/image_antcommartresults.png]
Figure 4: Completed Physiome Model Repository search tab.

This completes the configuration of the image source step. When we click Ok in the dialog the images will be downloaded to the default directory on our local disk.

We can also use the combobox at the bottom of the dialog (Figure 1) to set the image type however this is only necessary if the image type cannot be determined through the filename extension. In our case we can leave this as it is.

MAP is not setup to work with streamed resources so we must download the workspace from PMR to our local disk.

Configuring the Point Cloud Step

Configuring the Point Cloud step is trivial at this time. This is because the step only requires an identifier to be set. The identifier will be used to create a directory where the received point cloud will be serialized.

Executing the Workflow

At this point you should have a workflow area looking like this:

[image: ../_images/configured_MAP_1.png]

Once the All the steps in the workflow are configured (i.e. no more red gear icons) we can make connections between the steps. To make a connection between two steps the first step must provide what the second step uses. When trying to connect two steps that cannot be connected you will see a no entry icon over the connection for a short period of time and then the connection will be removed. The following image shows an incorrect connection trying to be made.

[image: ../_images/error_connection.png]

If the mouse is hovered over a port you will see a description of what the port provides or uses. To make a connection click on a port and drag the mouse to the port to be connected.

To execute the workflow we need to connect up the steps in the correct manner and save the workflow. The workflow should be connected up as can be seen in the following image.

[image: ../_images/connected_MAP_1.png]

Once the workflow has been saved the execute button in the lower left corner should become enabled. Clicking the execute button will, naturally enough, execute the workflow step by step.

Note

We can make connections between steps at anytime not just when all steps have been properly configured.

Automatic Segmenter Step

The 'Automatic Segmenter' actually allows us to interact with executing workflow. With this step we can move the image plane up and down and change the visibility of the graphical items in the scene. The image plane is moved through the use of the slider on the left hand side. The visibility of the graphical items is controlled by checking or unchecking the relevant check boxes. To continue execution of the workflow click the Done button in the lower right hand corner.

 MAP Tutorial - Create Plugin

MAP Tutorial - Create Plugin

Section author: Hugh Sorby

Note

MAP [https://simtk.org/home/map] is currently under active development, and this document will be updated to reflect any changes to the software or new features that are added. You can follow the development of MAP at the launchpad project [http://launchpad.net/mapclient].

This document details takes the reader through the process of creating a new plugin for the MAP Client. The MAP Plugins document defines the plugin interface that the new plugin must adhere to.

A Simple Source Step Example

In this example we will create a source step for supplying Zinc model files. There are six steps we will need to complete, and they are:

	Modifying the Skeleton Step

	Creating an Icon

	Defining the Port

	Identification

	Serialization

	Configuration

Modifying the Skeleton Step

We could start from scratch and create everything but our task is made a little easier by the presence of the skeleton step. The skeleton step is a step in it's own right, but it is not useful. Our task here is to take the skeleton step and rename it to provide the starting point for our new step.

To start with copy the skeletonstep directory to another directory. To make this step our own we change all occurrences of the skeletonstep name to zincmodelsourcestep. The places we have to change are:

	The topmost directory name

	The inner directory name, this directory is used to namespace our new step.

	In __init__.py file in the topmost directory, we also need to uncomment the lines:

from zincmodelsourcestep import step
print("Plugin '{0}' version {1} by {2} loaded".format(tail, __version__, __author__))

	In __init__.py file in the inner directory. We have to change the name of the class to 'ZincModelSourceStep' and change the name of the step to 'Zinc Model Source'.

I will refer to the topmost directory as the 'step root' directory for the remainder of this example.

Creating an Icon

Creating an icon is optional as a default icon is provided, however it is nice to see your own icona and visually differentiate it from the other steps in the framework.

The are an all many of ways to create an icon to represent our step in the MAP application. So I will leave this as an exercise for the reader.

For the purposes of this example I created the icon below using the Gimp image manipulation program and it is available here.

[image: ../_images/zinc_model_icon.png]

We can use Qt's designer application to create a resource file from which we can generate a Python resource file. The creation of a resource file in Qt designer is out of the scope of this example but there are numerous demonstrations of how to do this available on the web.

Once the resources file has been created we can generate the Python version of this file like so:

pyside-rcc -py3 -o resources_rc.py qt/resources.qrc

A few things to note:

	the current working directory is assumed to be '<step root>/zincmodelsourcestep/widgets' (and it exists).

	the qt specific files are saved in a directory called 'qt', which is a subdirectory of the current working directory.

	'resources_rc' is the default resource file name used by the Python ui compiler, in this particular situation it is not important but just easier to name the generated resource file as the Python ui compiler expects for situations when the resources are needed by the user interface.

	the use of the -py3 flag, when creating image resources the presence or lack thereof doesn't make much difference at the end of the day but maintaining compatibility with both Python 2 and Python 3 is desirable.

Defining the Port

To make our step useful we need to make it provide/use information for/from another step. To do this we define a port for the step. The port is described using Resource Description Framework (RDF) triples. The MAP application defines the terms 'http://physiomeproject.org/workflow/1.0/rdf-schema#port', ' http://physiomeproject.org/workflow/1.0/rdf-schema#provides' and 'http://physiomeproject.org/workflow/1.0/rdf-schema#uses' among others. We can use to these terms to interchange information about the port we will create, for this example we are interchanging information between the plugin and the application. Further we can add this information into the semantic web so that others may search for and utilise it. While adding information about our step and it's ports into the semantic web is outside of the scope of the current example, it is important to understand the other ways in which we might inform other users and developers of our work.

If we define the term 'http://physiomeproject.org/workflow/1.0/rdf-schema#zincmodeldata' to define our Zinc model data object. The tacit knowledge we take from this definition is that it is a class derived from a Python object class with three attributes:

	_identifier

	_elementLocation

	_nodeLocation

Furthermore the _elementLocation will identify a file resource that defines the elements (and the nodes if _nodeLocation is empty) for the model and the _nodeLocation will identify a file resource that defines the nodes for the model. The class also has access methods 'elementFile()' and 'nodeFile()' which return a Python string holding the values of the respective attributes. The Python representation of this definition is given by the ZincModelData class:

class ZincModelData(object):

 def __init__(self):
 self._identifier = ''
 self._elementLocation = ''
 self._nodeLocation = ''

 def elementFile(self):
 return self._elementLocation

 def nodeFile(self):
 return self._nodeLocation

Identification

The step needs to be identified, among other things it determines where we deserialise and serialise to as well as being helpful for annotations. For this example we could simply supply a randomly generated identifier but we will allow the user to define one. The identifier can be used by the serialization/deserialization methods to store the step state in a file. Using the step identifier assures the developer that no-one else will write to that file. This enforces a requirement onto the identifier to be unique within a workflow.

Serialization

Serialization is the process of translating the object state into a format that can be stored (for example in a file) and later used to reinstate the object to how it was when the serialization took place. The exact how of the step serialization is up to the step author to decide, the following is just one way to approach this issue. The state of our step is stored within the ZincModelData object so we need to be able to serialize and deserialize this class. We will use the QSettings class from the Qt framework to do the serialization and deserialization for us. In the Step class we add the following two methods:

def serialize(self, location):
 configuration_file = os.path.join(location, getConfigFilename(self._state._identifier))
 s = QtCore.QSettings(configuration_file, QtCore.QSettings.IniFormat)
 s.beginGroup('state')
 s.setValue('identifier', self._state._identifier)
 s.setValue('element', self._state._elementLocation)
 s.setValue('node', self._state._nodeLocation)
 s.endGroup()

def deserialize(self, location):
 configuration_file = os.path.join(location, getConfigFilename(self._state._identifier))
 s = QtCore.QSettings(configuration_file, QtCore.QSettings.IniFormat)
 s.beginGroup('state')
 self._state._identifier = s.value('identifier', '')
 self._state._elementLocation = s.value('element', '')
 self._state._nodeLocation = s.value('node', '')
 s.endGroup()

The 'location' parameter that is passed into these two methods is the location of the project directory. The serialization and deserialization write to a file in this directory using the step identifier as the part of the filename. In this way with the step identifier being unique within the workflow the serialization process won't overwrite (or get overwritten by) another serialization process.

Configuration

Next we need to enable the user to be able to configure the step. To do this we can use qt-designer to create a 'configuredialog.ui' file that we can convert into Python code using 'pyside-uic'. We want the configuredialog.ui to look like this:

[image: ../_images/plugin_configure_1.png]

The Qt designer .ui file for this dialog can be found here. As it can be seen in the figure above we allow the user to set an identifier for the step and define the location of the element and node file that define the Zinc model. To generate the Python code from the .ui file execute the following command:

pyside-uic --from-imports -o ui_configuredialog.py qt/configuredialog.ui

Similarly for creating the resources there a couple of things to note:

	the current working directory is assumed to be '<step root>/zincmodelsourcestep/widgets' (and it exists).

	the .ui file is saved in a directory called 'qt', which is a subdirectory of the current working directory.

	the use of the --from-imports flag for Python 3 compatibility.

Having created the user interface part of the configuration dialog we need to add the Python code to handle the user interaction. We will use composition of the user interface code rather than multiple-inheritance to combine the user interface code with the user interaction code. Create a Python module 'configuredialog' in the 'zincmodelsourcestep/widgets' package. In this module create a class that derives from QtGui.QDialog and sets up the user interface in the __init__ method. The code should look like this:

from PySide.QtGui import QDialog

from zincmodelsourcestep.widgets.ui_configuredialog import Ui_ConfigureDialog

class ConfigureDialog(QDialog):
 '''
 Configure dialog to present the user with the options to configure this step.
 '''

 def __init__(self, state, parent=None):
 '''
 Constructor
 '''
 QDialog.__init__(self, parent)
 self._ui = Ui_ConfigureDialog()
 self._ui.setupUi(self)

It can be seen in this code snippet that I am passing in an object using the label 'state' into the constructor of my ConfigureDialog class. This object is used to represent the state of the ConfigureDialog object for the purposes of serialization and validation. This object is defined in another Python module called 'zincmodeldata' and contains a class named 'ZincModelData' that has three attributes:

	_identifier

	_elementLocation

	_nodeLocation

This class is used by and returned from two public methods of the ConfigureDialog class setState and getState. These two methods set the state and get the state of the corresponding user interface elements accordingly. The implementation of these two methods look like this:

def setState(self, state):
 self._ui.identifierLineEdit.setText(state._identifier)
 self._ui.elementLineEdit.setText(state._elementLocation)
 self._ui.nodeLineEdit.setText(state._nodeLocation)

def getState(self):
 state = ZincModelData()
 state._identifier = self._ui.identifierLineEdit.text()
 state._elementLocation = self._ui.elementLineEdit.text()
 state._nodeLocation = self._ui.nodeLineEdit.text()

 return state

The ConfigureDialog class is also going to help us validate the step configuration. When we have a valid step we can execute the workflow that uses the step. So when validating our step we need to ensure that it has everything required for successful execution. In this case, the requirements are an existing element file. A node file isn't strictly necessary as it may be incorporated into the element file.

With this in mind we define the 'validate' method of the ConfigureDialog class to return True when we have the location of an existing exelem file and False otherwise. It is also important to document the condition(s) under which the step is considered valid so that other uses understand the expected behaviour. The 'validate' method should look like this:

def validate(self):
 element_filename = self._ui.elementLineEdit.text()
 element_valid = len(element_filename) > 0 and os.path.exists(element_filename)

 self._ui.buttonBox.button(QDialogButtonBox.Ok).setEnabled(element_valid)

 return element_valid

By manipulating the state of the 'Ok' button we know that the step is valid when returning from the dialog when the 'Ok' button has been activated.

As far as the ConfigureDialog is concerned all it requires is for the connections between the widget signals and class methods to be defined. To make the required connections we can create a method called '_makeConnections' which we can call from the constructor and add three supporting methods for handling the responses to user actions. Here is the code we need to add:

def _makeConnections(self):
 self._ui.elementButton.clicked.connect(self._elementButtonClicked)
 self._ui.nodeButton.clicked.connect(self._nodeButtonClicked)
 self._ui.elementLineEdit.textChanged.connect(self.validate)

def _lineEditFile(self, line_edit):
 (fileName, _) = QFileDialog.getOpenFileName(self, 'Select Zinc File')

 if fileName:
 location = os.path.basename(fileName)
 line_edit.setText(fileName)

 self.validate()

def _elementButtonClicked(self):
 self._lineEditFile(self._ui.elementLineEdit)

def _nodeButtonClicked(self):
 self._lineEditFile(self._ui.nodeLineEdit)

There are a number of niceties that we have not added into this example code that we could have. We have also not added any checks to make sure the file selected is an exelem file. But this fits in with the approach where we consider that TUINAI.

 Glossary

Glossary

	Python

	The Python interpreter

	Mercurial

	Distributed version control system.

 Appendix A - Generating html documentation

Appendix A - Generating html documentation

This appendix covers how to generate html files from the ReStructured text documentation source files. The documentation is generated using the Sphinx documentation tool. Sphinx is a tool that makes it easy to create intelligent and beautiful documentation.

Generating the documentation is very easy. First you need to download and install Sphinx if you don't already have it. Then you use the command line to run the sphinx build tool, which will generate the documentation in the target format.

There are two ways of generating the documentation. You can either use the supplied Makefile in the resources directory or you can use 'sphinx-build' directly. The Makefile is setup to use specific locations, but these location can be overridden when invoking the make command. The 'sphinx-build' application requires the source directory, the build directory, the configuration directory and the documentation target format to be supplied on the command line.

The commands for these two methods of generating the documentation are given here:

Method 1.
make -f docs/resources/Sphinx.Makefile html

Method 2.
sphinx-build -t html -c docs/resources docs build

note:

	This assumes your current working directory is the parent of the 'docs' directory

	If a directory 'build' doesn't exist in the current directory it will be created

That's it! Now you can use your favourite webbrowser to read the documentation. The 'index.html' file for method 1. is located in 'build/html' and for method 2. it is available in 'build'.

 Glossary

Glossary

	Clone

	Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in order to have a local copy of a repository to work in.

	Embedded workspace	Embedded workspaces

	A Mercurial concept that allows workspaces to be nested within other workspaces.

	Exposure	Exposures

	A publicly available page that provides access to and information about a specific revision of a workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s) contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed. CellML files for example are presented with options such as code generation and mathematics display, whereas FieldML models might offer a 3D view of the mesh.

	Fork

	A copy of the workspace which includes all the original version history, but is owned by the user who created the fork.

	Mercurial

	Mercurial [http://mercurial.selenic.com/] is a distributed version control system, used by the Physiome Model Repository software to maintain a history of changes to files in workspaces. See a tour of the Mercurial basics [http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html] for some good introductory material.

	Pull	Pulling

	The term used with distributed version control systems for the action of pulling changes from one clone of the repository into another. With PMR, this usually implies pulling from a workspace in the model repository into a clone of the workspace on your local machine.

	Push	Pushing

	The term used with distibuted version control systems for the action of pushing changes from one clone of the repository into another. With PMR, this usually implies pushing from a workspace clone on your local machine back to the workspace in the model repository, but could be into any other clone of the workspace. See a tour of the Mercurial basics [http://hgbook.red-bean.com/read/a-tour-of-mercurial-the-basics.html] for some good introductory material.

	Python

	Python is a programming language that lets you work more quickly and integrate your systems more effectively. See http://python.org for all the details.

	Synchronize

	Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

	Workspace	Workspaces

	A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or directory in which files are stored, with the added feature of being version controlled by the distributed version control system called Mercurial [http://mercurial.selenic.com/].

 Tutorial to do list

Tutorial to do list

General

Todo

	Add many more references (.. _like-this:) to docs for cross-referencing.

	make sure all references to the staging instance are updated to teaching.physiomeproject.org

Within sections

Todo

This section needs more work.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-xy2345/checkouts/latest/PMR2/embeddedworkspaces.rst, line 9.)

Todo

	Update all documentation to reflect workspace ID changes and user
workspace changes, if they go ahead.

	Get embedded workspaces doc written.

	Get some best practice docs written.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-xy2345/checkouts/latest/PMR2/index.rst, line 36.)

Todo

These images need to be updated if there is time.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-xy2345/checkouts/latest/opencor-tutorials/newWork.rst, line 66.)

Todo

	Add many more references (.. _like-this:) to docs for cross-referencing.

	make sure all references to the staging instance are updated to teaching.physiomeproject.org

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/andre-test-xy2345/checkouts/latest/todoList.rst, line 10.)

 MAP Client Documentation

MAP Client Documentation

The documentation for MAP Client.

 The MAP Client

The MAP Client

This section of the tutorial covers the MAP Client.

 Index

Index

 A
 | C
 | E
 | F
 | M
 | P
 | S
 | W

A

 	
 	Auckland Physiome Repository web interface

C

 	
 	Clone, [1], [2]

E

 	
 	Embedded workspace, [1], [2]

 	Embedded workspaces, [1], [2]

 	
 	Exposure, [1], [2]

 	Exposures, [1], [2]

F

 	
 	Fork, [1], [2]

M

 	
 	Mercurial, [1], [2], [3]

P

 	
 	PMR2

 	Pull, [1], [2]

 	Pulling, [1], [2]

 	
 	Push, [1], [2]

 	Pushing, [1], [2]

 	Python, [1], [2], [3]

S

 	
 	Synchronize, [1], [2]

W

 	
 	Workspace, [1], [2]

 	
 	Workspaces, [1], [2]

 <no title>

Note

The teaching instance of the repository is a mirror of the main
repository site found at http://models.physiomeproject.org/,
running the latest development version of PMR2.

Any changes you make to the contents of the teaching instance are not
permanent, and will be overwritten with the contents of the main
repository whenever the teaching instance is upgraded to a new
release of PMR2. For this reason, you can feel free to experiment
and make mistakes when pushing to the teaching instance. Please
subscribe to the cellml-discussion [http://lists.cellml.org/mailman/listinfo] mailing list to receive
notifications of when the teaching instance will be refreshed.

See the section Migrating content to the main repository for
instructions on how to migrate any content from the teaching instance
to the main (permanent) Auckland Physiome Repository.

_images/RawCellMLViewScreenshot04.png
noble_model_1962.celiml ()
dv _ (INa+1K+1Leak) | Optimise Font Size
dtime Cm Vs
V| Greek Symbols
e e e o ora oo e s L ek Sy s
g e ¥ vgeroing
> Copy o Clpbound
& Pt o
e
e
eistinec/ess
L <o
Cmeress
| P
£ <appiv>
= <divide/>
-8 P
2 <minus/>
E P
h <plus/>
ot pacress
e
i Teaeress
L P
[<appres
e
L P
[<appres
[<rmmen
[eomommnss i
bOEEEER o)

Line: 42, Col: 20 INS.

_images/tut1-rolloverlist.png
Exposure Rollover

037c7chght minses

fddzsaoostic 1209 Coman

asdmorerads 1127

os72d0d006d0 0507

Ia3e1dacoots

Seasedeszo

[

seoraaseonrs 0300

from the dacumentation

Miner i o documentaton, changed e

Adting KT versan o documentaion fr

Added images in i and g format

commiting versond? of beser._reuer_ 1877

commiting versonds o beser._reuer 1577

commiting version0? of beser._reer 1577

Commiting versiend3 of beser._reer 177

(vone)

Ventricular myocardial fibres.

(vone)

(vone)

(vone)

(vane)

(vone)

(vane)

(vone)

(vane)

(vone)

(vone)

(vone)

(vone)

_images/wizard1.png
Exposure Creation Wizard

ada

_images/trash-empty.png

_images/importdialog_blank_1.png
Import Workflow QUOw
deregister

Physiome Model Repository
Workspace: | m— 1

_images/CellMLAnnotationViewScreenshot01.png
File View Tools Help

noble_model_1962.cellml (£

Edting

@ noble model 1962

4 @ units

@ millisecond

@ per_milisecond

@ millivolt

@ pemillvolt

@ per_millvoltmilisecond
@ mills_percm2

@ microf_per_cm2

@ microh_per cm2
Components

8 environment

@ membrane

8 sodium_channel

8 sodium_channel_m_gate
8 sodium_channel_h_gate
8 potassium_channel

8 potassium_channel_n_gate

>
> 3 Connection#3
> 29 Connection #4
> 2 Connection =5
> 2 Connection %6
> 3 Connection 7
> 2 Connection %8
> 2 Connection 29
> 2 Connection =10

Please enter a term to search above...

‘There i no metadata associated with the current CellML element...

RO MEY

ey

_images/SingleCellViewScreenshot11.png
20
0
20
40
Maimumstep 0 millisecond | |-60
Masimum num... 500
Relatve tolerance 1e-07 50
o Absolutetoleran.. 107
£ Interpolate solut... True
a Graphs.
_ [Propeny Value 1,000
H 00
00
2 Parameters
Value Unit Bl e
-000042183054... dimensionless/...
200
3 w0 milivolt d
@on: 0 mills_per_cm2 o
O gNamax 0 ‘milliS_per_cm2 r T T T T 1
: K icrod. - o 200 400 500 00 1
Simulation time: 0.001 s using Euler (forward). a
Simulation time: 0.022 s using Euler (forward).
Simulation time:0.001 s using CVODE. o
Simulation time: 3,43 usng CVODE.

_images/RawViewScreenshot06.png
File Edit View Tools Help
noble_model_1362.celml (3

[<2xml version="1.0" encoding="ucf-8"2>
Kmodel name="noble model 19627 cmeta:id="noble model 19627 xmlns:
<units name="millisecond">
<unit prefix="milli" units="second"/>
</units>
<units name="per_millisecond”>
<unit exponent="-1" unit
</units>
<units name="millivolc">
<unit prefix="milli” units:
</units>
<units name="per_millivolt">

"millisecond”/>

‘http://wm.cellnl.org/cellml/1.04" xmlns:cellml:

<anit expoment="-1" prefix="milli" unit 2
</units> E
<units mame="per_millivelt_millisecond"> 3
H <unit exponent="-1" units="millivolt"/> 2
g <umit exponent="-1n units=tmillisecond®/> z
</units>
5| <units neme="millis per cm2v> =
5 <unit prefix="milli" units="siemens"/> 2
2 <unit exponent="-2" prefix=vcentil units="metre"/> g
2 </unics> 3
<units name="microf_per_cm2">
faraan/> H
centin units="metzen/>
<units name="microh per_cm2">
<unit prefix="micro" units="ampere"/>
2% prefix=ncenci® units="metre/>
<component name="environment’>
<variable name="time" units="millisecond" public_interface="out®/>
</component>
<component name="membrane": =
] 3
Find: - >
Replace with: Replace Replace &Find_Replace Al

Line:1, Col: 1 INS

_images/tut1-cloneurl.png
Beeler, Reuter, 1977

Exposure Information
No simplfied view avaiabl for this orkspace 2 1o related sxporures were fand.

Workspace Summary

Gemo User <demousergesor
RI for mercurial clone/

Open ink In newtab

Files Open ink In new window
Filename Date Options
Save nk as..

B ectr_reuter 19770 T bromse]
B beclr_reuter_1577 el — 9111209 13:38 +1300 bromse)
B sectereuter 1977 0n0 “b11.12.09 1338 41300 bromse]
B beclr_reuter_1577 session sl 75 2031:12:09 1338 41200 bromse] (rn)
B secterreuter 1977 v0 sy 2011209 1398 41300 bromse]
B beclr_reuter_1977.x 06 0sas209 1338 41300 tbromse)
B bectereuter_1977_documenta aass 2011.12.09 1338 41300 bromse]
[p— s osss2es 1msesie tbromse)
& celml_renderng of st 20112091338 41300 bromse]

_images/tut1-advancedsearch.png
" solteter

aodbeter —

Search results for goldbeter

s yein and ez Kinsse
0 setect Anone.

™ wced Ca2l oscllations based on Ca"2-induced Caz release

Gi @ P2 Exposure File

4 vy eipssinaFaa e’ binding nhibtor
e W72 Expogurs Foldr, ersibly binding inhibitor

§ @ Folder inding inhibtor

- e Vein and el Kinaze

A0 Collection ving Cyclin and cde2 Kinase
A Mg v ik Ve and cde Kinase

on) PHRZ Workspace Container

oo o vesterday

_images/plugin_wizard_output_1.png
Workflow Step Wizard

| <Back || /| cancel

_images/tut1-modellistings.png
A

[———

Electrophysiology

Reconsrucion of the action potentl offre
Albrecht, Coleorove, Fricl, 2002
Diffrenl Requlation of 8 Ca2+ Uptake and Release Rates Accounts for Mltple Modes of Co2+-induced Cazt Relesse
Albrecht, Colegrove, Hons wovarava, Andrews, Fric, 208
Multple Modes of Cacuminduced Calcum Release in Sympathese Neuron I: Atenuationof Endoplasmic Reticuum Ca2 Aceumulasen a Low [Ca2+1) during
Weak Depolaciation
Aslanid, Boyets, Dobraynski, L, Zhang, 2009
Mcharisma of ansion from normal o reenran lecrical actvy in a modelof rabie avil Sssus nteraction of Ussue heterogenady and anstropy
(ptmal velocty and safety of dscantnuous conducion through the hterageneous Purkine-ventriular uncten
Reconsrucian of the acton potential of venbicar myocardia fbres, mth modifcations t demonstrate uncertiny
Reconstrucian of the acton petertal of venticar myocardial fbres
Bensan, Astanidi, Zhang, Holden, 2000
The canine vetual ventrcular all. latform for isecting pharmacsogicl efects on propagaton and arhytmagenesi (Epicardil Coll Mode))
Bensan, Astanidi, Zhang, Holden, 2000
“The canine vitustventcar mal: & platfrfo dissecing sharmacoloical fecs o propagaton and aehythmogenesis (Endocargal Cell ode)
Benson, Astanidi, Zhang, i

sartorius muscie

Role for G protin . bea-gamma isform speciicy i synaptic signal processing (Post Synaptc Cel)
Bertram, Pedersen, Luciani, Sherman, 2006

X simplied mode for mtachondss AT? producson

The Phantom urstar Modelfo Pancratic Sata Cells (fas bursting model)

“The Phantom urster Modelfo Pancrati Beta Cells (medium bursing model)
Bertram, Previte, Sherman, Kinard, Satin, 2000

“The Phantom urste Modl for 9ancreai Bat Cells (o burstng madel
Bertram, Rhoads, Cimbors

X hantom burstng mechaniem fo eisadic busting: oignal model
Bertram, Rhoads, Cimbora, 2

 hantom burstng mechanism fo episadic bursting: modiiedto incude channelnase inthe eak curent
Bertram, Sherman, 2004

X Cacum-based Phantom Bursting Madel for Pancrestcets
Bertram, Smolen, Sherman, Mears, Atwater, Nartin, Sori, 1995

X rlefor clciom release. achated current (CRAC) i cholnrgic madulation o electial acity in pancrestic bet-cel

darenke, Sziget, Bett, Kim, Rasmusson, 2004
Computer mode f actionpotental o muse venticlar myocytes (Apical Cell Descrition)
darenke, Sziget, Bett, Kim, Rasmusson, 2004

Computer model f actionpotental o mouse ventriciar myocytes (Septal Cell Desrption)
Contrel of the pacemaler aciiy of the sinoatialnode by inracelllar CaZ+. Experments and modeling

Mathamatical modeling andspecta simulation of genetc diseases i the human heart

Models of esgiratory Ahythm Generation i the re-Botsinger Compler. . ursing#acemaker Neurons: model 1 (nhich doesnotincude a slom poassum

current)

_images/zoom-in.png

_images/plugin_wizard_ports_type_1.png
Type Object

1 provides v

Emwdes

_images/SingleCellViewScreenshot01.png
File

View Tools _Help

no_vol_model.celml

Edting

Simulation

o Sorry, but the Single Cell view requires a valid CellML file to work...

(See below for more information.)

'D:\Dropbox|0penCOR|\Hodels\no_voi_model.cellml
Runtime: invald.
Error: the model must have atleast one ODE or DAE.

_images/image_owltermscompleter.png
Physiome Model Repository

Workspace:

Ontological term v | [anterior communic| || Search

Anterfor communicating artery [FMA_50169]
Anteromedial central branch of anterior communica
Branch of anterlor communicating artery [FMA_796
Trunk of anterior communicating artery [FMA_76068]
Trunk of branch of anterior communicating artery [

_images/list-remove.png

_images/tut1-mainscreen.png
Physiome Repository Navigation

Main model listing Physiome Repasitory

The st ofprocessed mde! exposures(formats 100 pr
Pages generated from the metadata they conan. ARerativey, 1ou may start bosing ia the categeies that are Isted

1 full), whichare modes that have documentation

Fiease ote: Comments aboutthefuncona tatus o curstion sttue ofthe models ithin
ofthe CalM_ Model Repastory cura
700 have 3 query oresue with camments made on e e

s repastory are the oinans
5 We doour best to accurately represant these models, but lease contac s #

CellML models by category.

FieldML models

trythe Ontloay b h engine.

_images/plugin_wizard_ports_1.png
Workflow Step Wizard

Type Object Add

N

<Back || Next> || Cancel

_images/extending05.png
n62.cellml

stimCurrent
IStim= Am time mod stimPeriod < stimDuration
0.0 otherwise

<variable name="stimburation” initial_value="1" units="ms"/>
<variable name="stimCurrent" initial_value="400" units="uA_per_mmcu"/>
<variable name="An" initial_value="200" units="per_mn"/>
<math xmins="http: //ww.u3.0rg/1998/Math/MathtL">
<apply id="stimulus_calculation"><eq />
<ci>Istime/ci>
<piecewise>
<piece
<apply><divide/>
<ci>stinCurrent</ci>
<ciAne/ci>
</apply>
<apply><lt/>
<apply><ren/>
<ci>time</ci>
<ci>stinPeriode/ci>
</apply>
<ci>stimduration</ci>
</apply>
</piece>
<otherwise>

uopeIoUUY TWIRD

H
H
£

v

Find: £~ stimulus_protocol
Replace Replace & Find Replace All

Replace with:

_images/HelpWindowScreenshot02.png
Edting

Simulation

DpenOR

Uoge3oULY WD

WD Mey

ey

analyse CellVIL filgUser interfaces.

can be downloaded Command ine interface (CLI)
Graphical user interface (GUI)

Various informatior{

be found n the foll{ -

Editing

« Supported | CelliLAnnotationView

u Userinterfa] ~ RawCelluLView
= Com| Rawview
= Grap| Miscellaneous

= Plugins, CellMLTools
= Ediil HelpWindow
Organisation

‘Simulation
SingleCellview

Known issues

Known limitations

[Whatis new?

Licensing,

[Team

CelllLModeIRepositoryWindow|
FileBrowserWindow
= Misc| FileorganiserWindow

m

= Known issu[Contactus

= Known limitaome—————————-"-"—"

= What is new?

‘Some more general information about OpenCOR can

be found under:

= Licensing
= Team

Copyright 20112014

VPR_ -

_static/ajax-loader.gif

_images/FileBrowserWindowScreenshot03.png
File View Tools Help

File Browser 8 x noble_ 1962.celml £
@ noble_model 1962 =
mitiey PR L —

b @ milisecond T
] hodgkin_huey_squid_axon_model 1952_ modified.cellml @ permillsecond
hodgin_ hudey_squid_sxon_model 1952_original.cellmi @ milivolt
hund_rudy_model 2004.cellmi @ per_milivolt
inada_AN_modil 2009.cellm @ per_millvot_millsecond Please enter a term to search above...
@ millis_per cm2

@ microF_per_cm2
@ microA_per cm2

b
b

b

b

b

b

iribe_model_2006.cellmi »
iyer_model_2004.cellm =
3

b

b

b

b

b

b

b

iyer_model 2007 cellm

CellML el
katsnelson_model_2004_dimensional.cellmi There is no metadata associated with the current o

Katsnelson_model 2004_dimensioniess.cellml e & sodium_channel_m_gate

uratsmodel 2002 cellm 2|0 @ sodum chamnelh gite

tindblacatrial model 1996.cellml 8 potassium_channel

Tivshitz_udy_modiel 2007 cellmi 8 potassiom_channel_n_gate | L i e
LR, Dynamic_modiel 2000 celml & leoknge.cument H
luo_rudy 1_model 1991 cellml 4 @ Groups 2
mahajan_shiferaw_model 2008.cellmi b & Group L i
maleckar_greenstein_trayanova_giles_model 2008 cellmi o 8 Group 22 E
matsuoka model 2003.cellml 4 5% Connections £
malister_noble.tsien_model 1975 A.cellmi > 88 Connection #1

DODODDDODDDODOOODDDDDDDC

meallister_noble_tsien_model 1975_B.cellmi
noble_difrancesco_denyer_model 1989.cellmi
noble_model 1962.cellmi | 3 Connection #4
noble_model 199L.cellm - 3 Connection 25

> &Y Connection 2
b
b
b
noble_model 1998.cellmi © &% Connection
»
b
b
b

38 Connection 23

noble_model 1998_extended.cellml 3¢ Connection 27
noble_model 1998 stretch.cellm 38 Connection 28
noble_model_200Lcellmi 38 Connection 29
noble_noble_SAN_model 1984.cellmi 38 Connection #10
noble_SAN_model 1989.cellmi

nvaren atrial model 1998.cellml
i D

DDODDDOC

_static/down.png

_images/tut1-newhistoryentry.png
=3
Shortlog

oate uthor ™ options Exposure
Dsecondsage Demo use Remaved parcrash abou vadaton errrsfrom the documertaton 6es) () (]

Miner i o documentaton, changed e

Fned ncorect iure image.

Adting HTHL version o documentation forthe model

commiting versonds of beser._reutr_ 1577
commiting versontS of beser._reuter_1977
commiting versont? o beser._reuter 177
commiting versont2 of beser._reuer 177

commiting versend3 o beser._reuter 1577

e 1) L2

e 1) L1
e 1) L2

f1e) 1) L

Fhes 1) (5

e 1) (2

e 1) L2

_static/down-pressed.png

_images/voi.png
L

_static/up-pressed.png

_images/media-playback-stop.png

_static/up.png

_images/exposure-wizard-import-from-uri.png
Exposure Creation Wizard

_images/reproduce01.png
© 00/ emac 2013 Tutorial - Not x |\, a0
G2 https://models.physiomeproject.org/w/andre/embc13-n62/@@shortlog 4 B O =
Y T

You are here: Home / User Workspace / andre / EMBC 2013 Tutorial - Noble 1962 reprocucibilty.

vien [CESR Fies ork

Shortlog

O]
.t

Date Author Lo options

14 David tweaking the potassium current to decrease the self-pacing frequency of this model; updating the. [fles] ‘The Noble (1962)

Nickerson documentation and results to llustrate this change. [tg2] [zip] | cell model

David adding an HTML document to use as the documentation for this workspace and to use when creating an [fles] ‘The Noble (1962)
Nickerson exposure [tg2] [zip] | cell model

David adding screen shot from OpenCOR showing the self-pacing action potentials. [fles]
Nickerson [t2] [zip]

adding initial version of my Nable 1962 cardiac cellular electrophysiology model. This version of the.

_images/extending04.png
n62.cellml

<units>
<component creta: id="time_component" name="time">

<variable creta:id="time" initial_value="0.0" name="time" public_interface="out" units="ms"/>
</component>

<component creta: id="paraneters" name="parameters">
<variable initial_value="0.001" name="g_K add" public_interface="out" units="ms_per_mmsq"
</component>
<component creta: id="interface" name="model">
<variable name="time" private_interface="out" public_interface="i
<variable name="T_stim" private_interface="out" public_interface="in" units="uA_per_mm2"/>
<variable name="g_K_add" private_interface="out" public_interface="in" units="ms_per_m2"/>
</component>
<component creta: id="embrane" name="erbrane">
<variable creta:id="Vm" initicl_value="-73.8" name="V" public_interface="out" units="mv"/>
<variable initial_value="0.12" name="Cn" units="uF_per_m2"/>
<variable name="time" public_interface="in" units="ms"/>
<variable name="i_Na" public_interface="in" units="u_per_m2"

LonEIouuy IR

§
H
£

v

Find: £~ stimulus_protocol
Replace Replace & Find Replace All

Replace with:

_images/RawViewScreenshot05.png
File Edit View Tools Help

noble_model_1562.celim (3
<ol version=r1.0" encoding="urf-87>
<model name=rnoble model 1962" crete:id="noble model 19627 xmlns="htp://wns.cellnl.org/cellml/1.08" xmlns:cellml
Conita remasssaszenies E
<unit prefix="milli" unicts="second"/>
</unize>
S Undo culez
 Redo culey
N cut culex
<unic prefix="milli" units="volc"/> - ane
</unize> .
Cimies mamemrper millivelcrs O poste cuv
<unit exponent="-1" prefix="milli" unic: X Deete o 2
</unize>]
<units name=rper_millivelt_millisecond"> A FndfReplace.. Cul+F z
H "millivolt/> Find Next =] i
g relissscona/> FndPreious ShiteF3 s
5| <unics neme=mmillis per amavs SelectAll Cutea -
<unit prefix="milli" unics="siemens"/> g
E <unit exponent=r-2" prefix="centi” units="metre"/> £
k- </units> -
<units name=rmicrof_per_cm2">
<unit prefix="micro" units="farad/> z
<unit exponent="-2" prefix="centi” units="metre"/>
</unize>
<units name=rmicroh per_cm2">
<unit prefix="micron unita="ampere’/>
<unit exponent="-2" prefix"centi units="metre"/>
</unize>
<component name="envizonment”>
<variable name=vcime" unita="millisecond” public_interface=rouc"/>
</component>
<component name="membzane">
<variable name="V" initisl value='-87" units="millivolt" public_interface="out'/>
<variable name="Cm" initial value=r12" units='microf_per cm2"/>
B T T A N)

Line:1, Col:1 INS

_images/view-refresh.png

_static/plus.png

_images/FileBrowserWindowScreenshot01.png
File View Tools Help

Fie Browser 8 x

E 4 ¢

Neme

4 & system (C)
1 Program Files
4 Users

B]

SEvvvvvvvvvoy

b &3 VBOX_Data (D)

P BE

Edting

Simulation

Open@OR

Uone3ouy WD

WD Mey

y

_static/file.png

_images/metadata-pmr2-rdfindexing.png

_images/annotation01.png
// o VPH 2014 tutorial - Noble % |

C | [teaching.physiomeproject.org/workspace/1c9/rdf_indexer 49 BRov =

Search Site

You are here: Home / Workspaces / VPH 2014 tutoria - Noble 1962 model (andre)

For

RDF Paths
Paths that will be indexed as RDF.

n62celiml Af—

Apply | Apply Changes and Export To RDF Store.

©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_images/fieldmlexposureexample1.png
Laminar structure of the Hear

A mathematical model.

ticen

12 arinr s o g

_images/select_workflow_directory_1.png
Select Workflow Directory. QYooY
B Home eme —

Network mapclient
B projects

- jmapclient/projects/femursegmentation
|_ES NewFolder... || ¥ 0k || @ Cancel |

_images/tut1-searchresults.png
“a andbeter 1991

Search results for goldbeter 1991
38 tems matchingyour search term.

Srtby relevance - dat (nemest frst) - sohabetcaly

by admi —last modied Feb 05, 2013 12:27 M.
Dupont Berrdge Goldbeter 1991
by Cotherine sy — last modiied Jan 2, 2011 0416 PM
Located n Workspaces
Goldbeter, 1991
by James Lansen — published Dec 05, 2009 — lst modifed Mar 17, 2010 09:31 A4
2 inimal Cascade Modelfor the Mt Osclata Invohing Cycln and cdez Kinase
Gardner, Dolnik, Collns, 1998
Aheoryfor conraling cll cyce dynamics s binding nitor
A theary for contraling cll cycle dynamics using a reversibly binding nhibitor
by admin las modfied Feb 14, 2012 05:00 M — led under: Cel. Moce
A'theoryforcoraling cll eyce dynamis ueng a reversily binding inhior
Locatadin Exposures) Gardne, Dok, Callns, 1398
the Mitotic Oscllator Involwing Cre
by admin — last modified Feb 14, 2012 01146 7M — led under: CelL Model
Located in Exposures / Gldbeter, 1991
by admin — last modfed Feb 4, 2012 02111 M e unders Cel. Model
X inimal Cascade Modelfor the Waotic Osciltar Invaing Cycln and cde2 Kinsse
Locatedn Exposures / Godbeter, 1991
Goldbeter, 1991
oy Catherne oy — publahed Jl 05, 2010 — last modified May 13, 2011 03:09 M
2 il cascade mode fo the it ssclaor imvahing ¢y and cde2 inase
Goldbeter, 1991
by Catherine Uoyd — publahed Mar 17, 2010 — last modifed Jun 02, 2010 10:7 PM
A'minimal cascade model for the s oxciato muahing cycin and cdc2 inase
Goldbeter, 1991
by Catherine oy — publshed Jun 02, 2010 — last modfied Jun 04, 2010 0150 AM
A'minimal cascade model for the ot osilator nvalving cycin and cdc? inase
Locatedin Exposires

Next 10 teme » (11234

_images/task-attention.png

_images/hgUpdate-2.png
PN T ———

2(3cad43650008)
adding an HTML document to use as the documentation for this workspace and to us

3 (s0adres20023) default tip

‘tweaking the potassium current to decrease the slf-pacing frequency of this mod
st updated files (~verbose)
Discard local changes, no backup (-C/-~clean)

2 ipine] [l]

_images/applications-internet.png

_images/zoom-out.png

_images/SingleCellViewScreenshot02.png
o
Property Valve unt
+ ODE sover
Name cvone 4
Moimumsicp 0 millsecond|
Moimam num... 500
Relstive tolerance 107 600
o Avsoletolean.. 1007
| imerpobtesolut True
h A4 Graphs_ 7
| property Valve
o
H
id Paraneters 200
Property Valve unt -
4 environment O
@ime o millsecond 1
+ leakage current
O:L P
- oors il _percm2
P STP— etk -

1,000 = -

Model type: ODE.

D:\Dropbox|0penCOR|\Hodels\noble_model_1962.cellml
‘Runtime: vaid.

5 ofpus

_images/extending02.png
Editing

®® C 0 | | mmmmmmo $ = 5

Simulation

Property [Value e 2
Starting point 0
Ending point sooo‘—_
Point interval 1 7
i2 Solvers
property [Value | Unit %
v ODE solver
Name cvoDE
Maximum step 0 ms o
500
1e-07
1e-07 o
Interpolate sol... True
r T T T T |
o Graphs o 1000 2000 3.000 4000 5.000]
property Value 1000 . . .
» ¥ timetime | model.membraneV]
e
500
v Parameters]
property [Value | Unit 400
onm 1.316668; 54... dimensionless/ms]
v parameters 200
O oK add 0.001 mS_per_mmsq
v stimulus_protocol 1
O istim 0 uA_per_mmsq . . .
v time T T T T |
- a) 400 500 500 1,000

‘Simulation time: 0.002 s using CVODE.
Simulation time: 0.006 s using CVODE.
‘Simulation time: 0.008 s using CVODE.
‘Simulation time: 0.003 s using CVODE.

_images/addModel-3.png
gﬁ»mw»n:»

Orgsnize ~ @Open v Sharewith v New'folder

Name Date modified Type Size

I Desktop. U hg 29/06/2013 1140 3..._File folder

_images/media-playback-pause.png

_images/image_configurepmr.png

_images/RawCellMLViewScreenshot03.png
Edting

Simulation

<

<apply>
<aize/>
<bvar>
<ci>timec/ci>
</bvar>
<ci>v</ei>
</apply>
<apply>
<aivide/>
<apply>
<minus/>
<apply>
<plus/>
<ci>i Na</ci>
<civi K</ci>
<ci>i_Leak</ci>
</apply>
</apply>
<ci>Cme/ci>
</apply>
</apply>
</matn>
</component>

o0 D

WpD Moy

ey

Line: 42, Col:19 NS,

_images/RawCellMLViewScreenshot05.png
Fle tat view [Took] Help
noble_model 13 CellMLFileEiportTo >

| ClMLvlidtion |\ v - (im +ip+ imk)

Bl Language 4 0 =
A= dtime Cm
E P '3.0rg/1998/Math/MathML"> A

<ea/>
=) <apply> O
<aife/>
<bvar>
<ci>timec/ci>
E </bvar>
<cisve/ci>
E </app1y>
<apply>
<divide/>

Edting

=] <apply>

<minus/>

<apply>
<plus/>
<ci>i Na</ci>
<civi K</ci>
<ci>i_Leak</ci>

E </apply>

E </apply>

<ci>Cme/ci>

E </apply>

E </apply>

E </matn>

</component>

il | v

Simulation

Validate the CelIML file

_images/annotation06.png
i e — Physiome Model R % |\

& - € [teaching.physiomeproject.org/ pmr2_ricordo/query 45 BRQO% =

v ae
[otus rome |y Wortopaer | Brpomres | pomennton | oo]
You e here: Home

Simple ontology-based metadata query form

Ontology term to query
Start by typing the ontology term you wish to find, then select the desired term out of the possible terms to query with in the list presented by the drop down. A green
checkmark will indicate that the search will be valid for the term shown.

voltage-gated sodium channel complex

Search

Search results
E] voltage-gated sodium channel complex
voltage-gated sodium channel complex - (http:/ /identifiers.org/go/G0:0001518)
“A sodium channel in a cell membrane whose opening is governed by the membrane potential." [ISBN:0198506732 "Oxford Dictionary of Biochemistry and
Molecular Biology"]

« [Workspace] VPH 2014 tutorial - Noble 1962 model (andre) / n62.cellml#sodium_channel

Details

_images/plugin_wizard_ports_definition_1.png
(R to:/imy example. org/l. OMworkflowstep#images

_images/RawViewScreenshot01.png
File Edit View Tools Help
noble_model_1362.celml (3

2xml version="1.0" encoding="utf-&ni>
model name="noble model 19627 cmeta:id="noble model 1962" xmlns:
<units name="millisecond">
<unit prefix="milli" units="second"/>
</units>
<units name="per_millisecond”>
<unit exponent="-1" unit
</units>
<units name="millivolc">
<unit prefix="milli” units:
</units>
<units name="per_millivolt">
<unit exponent=r-1" prefix="milli" unit
</units>

‘http://wm.cellnl.org/cellml/1.04" xmlns:cellml:

"millisecond”/>

<units name="per_millivolt millisecond">

g <unit exponent=r-1" units="millivolt”/>

- <unit exponent=r-1" units="millisecond"/>
</units>

5| <units name="millis per_cm2">

3] <unit prefix="milli” units=rsiemens"/>

2 <unit exponent=r-2" prefix="centi” units="metre"/>

2 </unies>

<units name="microF_per cm2">
faradn/>
centi” units="metren/>

<units name="microh per_cm2">
<unit prefix="micro" units="ampere"/>
27 prefix=ncenti” unit

"metren/>

<component name="environment”>
<variable name="time" units="millisecond” public_interface="out"/>
</component>
<component name="membrane”>
<variable name="v" initial value

. B —

oRe U WIED

W3 Moy

ey

Line:1, Col:1 INS

_images/updatedWorkspace.png
/6w VPH 2014 tutorial - Noble

& = € [} teaching.physiomeproject.org/workspace/1c9/@@shortlog 4% BOOy =

e — —

You are here: Home / Workspaces / VPH 2014 tutoria - Noble 1962 model (andre)

Shortlog
. (0

Log options

using OpenCOR to annotate the sodium channel component of my copy of the Noble 1962 model. [fles] ftgz]

tzip]

[fles] ftgz]
tzip]

2 minutes.
20

Adding an initial copy of the Noble (1962) electrophysiology model for use in the VPH 2014 ABT
Software tutoria!

.t

Site Map | Accessibity | Contact

©2001-2014 - 1UPS Physiome Project.

_images/reproduce05.png
Editing

O® €C 0 | | o § =,
i2 Simulation
property [Value | Unit
Starting point 0 ms @D
Ending point 5000 ms
Point interval 1 ms o
i2 Solvers
Property [Value | Unit 2
v ODE solver
Name CvoDE
Maximum step 0 ms
500 D
1e-07
1e-07
Interpolate sol... True @
T |
o Gt e 1000 2000 3.000 4000 5.000]
property [Value 1000 - . . .
» M timetime | model.membraneV]
e
500
i2 Parameters
property | Value | Unit 400
Ocm 0.12 uF_per_mm2]
@ stimC 0 uA_per_mm2
ov -77.9128710413... mV. 20
oV 0.027652226216... mV/ms 4
v potassium_channel
® 9Kl 0.009606576176... mS_per_mm2 T T T T 1
- N 00M27EETIER e > 200 400 600 500 1,000

/Users/dnic019/tmp/embc13-n62/n62.cellml

Runtime: vali
Model type: ODE.

Simulation time: 0.011 s using CVODE.

_images/exposure-wizard-highlight-export.png
Source
Exposure Wizard Derived from markspace Becler
The exportedsructure ofthisexposure i o taching jctory/e/c1/@@mizad_exporer

Collaboration

Downloads

& Complte Archive as t52
Navigation

Reconstrucion ofthe action potental

_images/addModel-2.png
Checkmark fles to add

T 12-0 *[E*+ [d 0k so2celmsunersioned)

e e smt@ || L et o
e p— 2 ot wrmormetpe) e cellnL .oxg/cellnl/1.0f" smins:(]

3 <units base_units="no" name="mm">
<unit prefix="milli" units="metre"/>
</units>

<unit prefix="milli"
</units>
<units base_units="no"
<unit prefix="micro”
</units>

<unit prefix="nano" units="mole"/>
</units>
<units base_units="no" name="mmsq">
<unit exponent="2" units="mm"/> 2

2= [aa][cox]

_images/addModel-5.png
2 v () Branch:default Copymessage v Options &)
Parent: ~1 (000000000000)

[Raaing =n inicial copy of che Noble (1562) cardiac cellulsz
lelectzophysiology model to the horkapace.

EREET s a—ry
Arbrcdmi cami 21

<[
£[E) * * [d G n62celim (was added)

<unit prefix="milli" units="metre"/>
</units>
<units base_unit:

<unit prefix="nano" units="gram"/>
</units>
<units base_units="no"

<unit prefix="milli” units:
</units>

_images/add-workspace-dashboard.png
Create a New Workspace

_images/document-print.png

_images/fork1.png
Exposure Information
LotestExposure 100 are 3 new ueer o the repostary, you may wish taview the expesurefo s werkspace. An exposare il shom th summarized

Workspace Summary

Files
Filename size oate Optons
B beclerrevter 19770 w0995 20111209 13:38 41300
B beete sesns 20111209 1330 41300 prowse
. e 2001.12:09 1338 41300
. 70 20111209 1338 41300 prowse) (un)
. 5 201112091338 41300
. mos aomrazos e esso —
B becle_revter_1977_documentaton b s 2011.12.09 1338 41300
B clLbagramat s aoirazos s esseo —
B ceim_rendering ot st 201112091338 41300

gworkspacel.../@@fc Sita ap | Accossibity | Contact

_images/SingleCellViewScreenshot15.png
File View Tools Help

no_voi_model.celiml (| | noble_model_1362.celm £ | = simple_dae_model.celm ||

= periodic-stimulus.xml [

O@® €0 | mEwm =

Property Value Unit
Starting point 0 millisecond.
Ending point 1000 millisecond.
Point interval 1 milisecond
52 Solvers.
Property Value Unit
4 ODEsolver
Name. CVODE
Maximumstep 0 millsecond|

Maximum num... 500
Relative tolerance 1e-07

Absolute toleran... 1e-07

Al
b id Graphs_
~ Valve
environment time | membranc.V
:
2 Parameters
Property Valve unt -
= membrane
Ocm 2 micoF_percm2
ov 776861102295, millvok
o 0.046296540388... milfvolt/millsecor

4 votassium channel

Rl P ————

D:\Dropbox|0penCOR|\Hodels\noble_model_1962.cellml
‘Runtime: vaid.
Model type: ODE.

5 ofpus

_images/CellMLModelRepositoryWindowScreenshot01.png
F=5(EoR

570 CellML models were found:

APrimer on Modular Mass Action Modelling with CeliVL

Areview of cardiac cellular electrophysiology models

Activation of spak

Activation of spaR

Adian. Chandler. Hodgkin. 1970

Aguda_B. 1999

Aguda_Tang. 1999

Albert_Haanstra. Hannaert. Van Roy. Opperdoes. Bakker and Michels. 2005

Albrecht. Colegrove._Friel. 2002

Albrecht_Colegrove_Hongpaisan. Pivovarova. Andrews. Friel. 2001

Alexander and Wahi 2010

Aon_Cortassa_2002

Aslanidi 2009

Aslanidi Atrial Model 2009

Asthagir_Lauffenburger. 2001

Bacilus Chassis

Bagei 2006

Bagei 2008

Bakker Mensonides. Teusink. Vanhoek. Michels. Westerhoft. 2000

Bakker_Michels_Opperdoes. Westerhoff. 1997

Barberis. Klipp. Vanoni. Alberghina. 2007

Baylor. Hollingworth. Chandler. 2002

Beard_2005

Beeler_Reuter. 1977

Benson 2008

Bental. 2006

Bemus. Wilders. Zemlin, Verschelde. Paniloy, 2002

Bertram. Amot. Zamponi_ 2002

Bertram. Pedersen. Luciani and Sherman 2006

Bertram_ Previte_Sherman. Kinard_ Satin. 2000

Bertram. Rhoads and Cimbora 2008

Bertram_Satin._Pedersen. Luciani_ Sherman. 2007

Bertram_ Satin_Zhang. Smolen. Sherman. 2004

Bertram._Sherman. 2004

Bertram. Smolen. Sherman. Mears. Atwater. Martin, Soria. 1995
1.1 Model Diaaram:

>

Edting

Simulation

DpenOR

Uone3ouy WD

WD Mey

y

_images/zoom-original.png

_images/image_configureblank.png
a nfigur

dentifier:

Local ile system || Physiome Model Repository

Location:

Image Source Type: | from file extension v

<

@ cancel

_images/addModel-6.png
gﬁ»mw»n:»

Organize + Includeinlibrary v Sharewith v New folder

xr Name Datemodfied Type Sz
B Desktop B+ 29/06/201311:43 5... File folder
1 Downlosds{() mmmmmell 89 v celimi 20/06/201311:30 a... CellML File 28

e

_images/SingleCellViewScreenshot05.png
Edting

H

L2 ‘Simulation 1,000 - -
Value
0 i
1000
1
Solvers. 8004
Value Unit
Euler (forward) 1
1 milisecond
Graphs
Property Value 500
400
i2 Parameters
Unit 4
E 200 -
i per.cm2 L
microA_per_cm2 |
microF_per_cm2

Plot Against

[y PlotAgainst Variabl o ntegrtion. |

»

D:\Dropbox|0penCOR|\Hodels\noble_model_1962.cellml
‘Runtime: vaid.
Model type: ODE.

5 ofpus

_images/wizard3.png
Selected file types CellvL

File
“The file within the workspace that requires special processing to be presentable in this exposure

beeler_reuter_1977.cellm N

[~ B subgroups

Documentation Ganerator

Documentation File
The file where the documentation resides in. If this object is already a file, leaving this field unselected means
the current file will provide the data from which the document will be generated from.

beeler_reuter_1977.cellm N

View Generator
The selected generator will be used to attempt to generate text for the default document vien.

HTML annotator N

Basic Model Curation

Curation Flags
Curation flags assigned to this object.

cor

2 star N
Isim

No value N
Opencell

2 star N

Curation Status

2 star N

License and Citation

File/Citation Format
Select the correct method to generate the citation and license information from the source file. Overwrites the
values below.

CellML RDF Metadata N

License

The license this work is licensed under. Will be overwritten if Citation For is specified.
No value N

dcterm:

The link to the license this model is licensed under. It is automatically assigned if one of the assignment
methods above is set.

Source Viever

Language Type
‘The language of this file

Opencell Session Link

Session File
The session file that is made for this file. If not selected, this file will be used for the "Launch” link.

beeler_reuter_1977.session.xmi ¥

Update Clear Subgroup Delete

_images/metadata-pmr2-search.png
simple ontology-based metadata query form

Ontolagy term to auery.

Start by 77ingth antlody term you ish tofind,the seect the desived tem out o the possible tems o query it inthe st presented by

on channel complex #(Go_0034703)

Search results.
Sodium channel complex - (et:/ /i dentifiers.

/00/G0:0034706)
s [Gocman]

+ [Workspace] Hodgkin,

7. 1952 / hodakin_husey.

 potassnm channelcomplex
potassium channel complex - (Wip:/ /dentifiers.oro/ge/G0:0034705)
“An 1 chanel comple though ahich petassium ians pas.” (GOC:mah]

+ IWorkspace] Hodgkin, Husley, 1952 / hodakin_huxley_1952.cellmisid_00002

_images/go-up.png

_images/go-previous.png

_images/sharingTab.png
Sharing for Demonstration workspace for a model
You can control who can view and edit your item using the lst below.

Searcn

Name Can add can et can hg push Can view

B Losgedin users °

 taherit permissions from higher levels

ramien o s © s n rked vl S, o e (9 bt bl e, i 4 meged b e

_images/plugin_wizard_misc_1.png
Workflow Step Wizard

Author name(s): o0 Vyyyy]_
Category:

| <gack || o> || cancel |

_images/reproduce04.png
2013 Tutorial

Nob X

Search Site

You are here: Home / User Workspace / andre / EMBC 2013 Tutorial - Noble 1962 reprocucibilty.

Location: EMBC 2013 Tutori;

- Noble 1962 reproducil

tv ofpcasaseshona)

Filename size Date options
B Vm.png 179949 2013-06-29 17:46 +1200 [browse]
B index.html 800 2013-06-29 17:46 +1200 [browse]
B n62.cellml 27100 2013-06-29 17:46 +1200 [browse]
©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_images/algebraic.png
L 4

_images/addModel-4.png
Em.mw.m.

Orgsnize ~ @Open v Sharewith v New'folder

Date modified Type Size

29/06/201311:40 a... _File folder

_images/tut1-rolloverbutton.png
Beeler, Reuter, 1977

Exposure Information

Workspace Summary

Gemo User <demousergesar
URE for mercurial clone/pul

Files
Filename size oate options

B beclerrevter 19770 w0995 20100025 16:25 41200

B becte_sevter_1977.ceimd sasor 20sa-0e-25 16125 01200

B becterevter1977.0n 201 20000025 1

B becterrevter 197 sessionsml 7o 20sa-0e-25 16125 01200)
B becterewter 19770 s 20140025 165

B becter_revter 19 2oy 2o1e0n25 162 41200

B becterrevtr_1 seon s 200000251

B coLbogramait st 2010025 162 e1200

B celm_renderng of st 20100025 1625 41200

_images/submitworkspaceforpublication.png
Beeler, Reuter, 1977

Exposure Information

Workspace Summary

Gemo User <demousergesar
URE for mercurial clone/pul

Files
Filename size oate options

B beclerrevter 19770 w0995 20100025 16:25 41200

B becte_sevter_1977.ceimd sasor 20sa-0e-25 16125 01200

B becterevter1977.0n 201 20000025 1

B becterrevter 197 sessionsml 7o 20sa-0e-25 16125 01200)
B becterewter 19770 s 20140025 165

B becter_revter 19 2oy 2o1e0n25 162 41200

B becterrevtr_1 seon s 200000251

B coLbogramait st 2010025 162 e1200

B celm_renderng of st 20100025 1625 41200

_images/sessionexample1.png

_images/extending01.png
D@ BOY =

Search Site

You are here: Home / User Workspace / agae / EMBC 2013 Tutorial - Noble 1962 reprocuciilty

View Edt_Hatory _Fles achronize _ Exposure Rollover _RDF Indexing _Sharing _ Layout

Create personal @t s workspace
Fork |

©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_images/screenshot011.png
¥ CellMLAPI

¥ CelMUAmnotationView
¥ CoreCellMLEditing

¥ Corekditing

¥ RawCellMLView

¥ Rawbiew

¥ CellMUTools
¥ Compiler
v Core
¥ HelpWindow
Organisation
' CelMLModeRepositoryWindow
V FileBrowserWindow
V FileOrganiserWindow
Simulation

 SingleCellView

¥ CoreSolver

 CVODESolver

 ForwardEulerSolver

 FourthOrderRungeKuttasolver

© HeunSolver

 Dasolver

 KNSOLSolver

¥ SecondOrderRungeKuttaSolver
Support

¥ CellMLSupport

¥ QscintillaSupport
Third-party

v M

v Qscintila

v am

¥ SUNDIALS

v Editor
v Editorlist
¥ Viewer

‘Show only selectable plugins.
Mote: OpenCOR il need to be restarted for your changes to take effect.

_images/metadata-opencor-annotating.png
B View Tols Hep
hodgkin hadey 1952 clri* ©

03505 o e

@ mitlsecond

Term: | sodum channel +

3 @ e mitacond
3 8 o 5
3 @ per minot miisecond Name Resource 14 2tems)
» @ i perm2
8 e a2 amionde-sensve sodum channel actuey 2 swmmm [+
A clustering of volage-gated sodum channels ® coousiz (4
: : *'W:""'*"‘ 20 of sodium lon transport via voltage-gated sodium channel 2 600090072 |4
sodum channe ctuty P
R sodum channel bocker oot cEmes (4
> m potassiom charnel P —
» @ potassium_channeln_gat] SIS S 500034708 |4
» @ faage-coment sodum channel it actuey o scomeen (4
- & Groups
Graop 01 sodum channel modulator P
Group 22
B rtiens sodum channel reguatr actey 2 ccourm [+
A connecton #1 T o i
28 Comnecton =2 .
38 Comecton =3
38 Comacton e Qualiier Resource 1a
& connection #5 biosisversionof. a0 60:0034706

¥ comne
¥ comne:
¥ comne:
¥ comne
N come

on =2
on #10

« s Home

- Ener Onolagy Term.

Sescn Oty (Gana Oy 601 oo

— o
ok Fodm v [6500E
Overview Is _

[o e]

| =]

_images/addModel-1.png
Date modified Type Size

29/06/201311:30 a... _File folder

_images/FileOrganiserWindowScreenshot02.png
Dpen@OR

_images/SingleCellViewScreenshot08.png
Masimumstep 0 millisecond
Maximum num... 500

Relative tolerance 1e-07

Absolute toleran... 1e-07

E| ivepsmemn e
h A4 Graphs_
~Tropery Ve
environment ime | membrane.V
27 & Vedd curent
2 X environment.time
Vo memboney
> Farameirs
Ve Uni B
0 millvolt ol
075 il per. 2
1651313984725 microh_per.em2
» icto e cm2
| Oy _40R4AIOT4ART milliuokt =

"Model type: ODE.
Simulation times 0.001 s using Euer (forward).
‘Simulation time: 0.022 s using Euer (forward).
‘Simulation times 0,001 s using CVODE.

5 ofpus

_images/media-playback-start1.png

_images/CellMLAnnotationViewScreenshot10.png
® Opencor
File View Tools Help
noble_model_1962.celnl* 3

@ noble model 1962
4 @ Units
> @ millisecond

@ per g
@ mills_per cm2

@ microF_per_cm2
@ microA_per cm2

B sodium_channel m_gate
B sodium_channel_h gate
B potassium_channel
B potassium_channel_n_gate
> B leakage current
4 @ Groups
Group #1
> & Group 22
4 3 Connections
> 8¢ Connection #1
> 8¢ Connection #2
3% Connection #3
&2 Connection 4
&2 Connection #5
&2 Connection #6
38 Connection #7
&8 Connection #8
&2 Connection 29
&% Connection #10

Edting

Simuation

Quatier: (bersnor

Term: go/G0:00052%

Information: you can directly add the term go/G0:0005248...

bioisVersion0f.

Go0001518

(1tem)

UoEu WD

About Help G

GI Celebrate 25 years with us
gm Sl

Gene Ontology Browser

Term Detail

voltage-sensitive sodium channel complex
G0:0001518
A sodium channel in a cell membrane whose opening is governed by the membrane

WPD Moy

=)

Add the term

_images/CellMLAnnotationViewScreenshot11.png
File View Tools Help
noble_model_i562.ceinl [| _godoeter_annotated_1593_new it s org_ur.cel £
@ goldberer 1991
+ @ Units
@ minute
@ fis order.rae constant
@ flx
@ micromalar

Components

B environment

o o Sorry, but the CellML Annotation view does not support this type of metadata...

-
- Mstar

-x

- Xstar

B model_parameters
Connections

38 Connection #1.
3% Connection #2
38 Connection 23
38 Connection #4
38 Connection #5.
38 Connection #6.
3¢ Connection 27
3¢ Connection #8.
3% Connection 29

(Please click here if you want to remove the existing metadata,)

Edting

Subject Pregicate Object B
‘goldbeter 1991 http://biomodels.net/biology-qualfiers/isVersionOf htp://identifiers.org/kegg pathway/hsa04110
‘goldbeter 1991 http://biomodels.net/biology-qualfiers/isVersionOf hitps//identifiers.org/obo.go/GO:0000278
‘goldbeter 1991 http://wnw.cellml.org/bqs/1 0% reference id.00005
hitp://purl.org/dc/elements/1.1/subject id_00007

id_00007 itp://wain3.01g/1999/02/22-rdf-syntax-ns#value id_00008.
itp://wain3.01g/1999/02/22-rd-syntax-nsStype http://wwwan3.org/1999/02/22-rdf-syntax-ns#Bag
hitp://wamn3.01g/1999/02/22-rdf-syntaxenst 1 oscilltor [en]
hitp://wan3.01g/1999/02/22-rdf-syntaxenst 2 cell cycle [en]
hitp://wain3.01g/1999/02/22-rdf-syntaxcns 3 cyclin [en]

RO Mey

2

ey

I

cvvvvvvvvgvvvvvvvBvvoy

hitp://wamin3.01g/1999/02/22-rdf-syntaxnsE 4 kinase [en]
hitp://wamcellml.org/bas/1 0%subject_type keyword [en]

hitp://wancellml.org/bas/1 O%reference 00006
hitp://wamcellml.org/bgs/1.0¢Pubmed.id 1833774 [en]

hitp://wamwcellml.org/bas/1 0loumnalArticle id.00009

hitp://purl.org/dc/elements/1.1/title A minimal cascade model for the mitotic oscilltor

hitp://purl.org/dc/elements/11/creator id 00010

i J 3

_images/SingleCellViewScreenshot03.png
Maximum step
Masimum num... [ETECTIIING

millisecond.

o Absolute toleran... | - or
2| ivepotesmin., anasiuts (hode)
|~ Graphs
o | Property. Value
H
hd Parameters.
Property. Value Unit .
4 environment]
® iime 0 millizecond
4 leakage current
OcL)
[- 218 0075 millis_per_cm2
Bl o "y <

1,000 = -

D:\Dropbox|0penCOR|\Hodels\noble_model_1962.cellml
‘Runtime: vaid.
Model type: ODE.

0 afpus

_images/FileOrganiserWindowScreenshot06.png
File View Tools Help

Fie Browser 8 x

=4 e

) LR _Dynamic_model 2000.cellml
| luo_rudy_]_model_1991.cellm!

) mahajan_shiferaw_model 2008 cellml

| malecksr_greenstein_trayanova_giles_model_2008cellmi
) matsuoks_model 2003.cellml

) mslister_noble.tien model 1975 Acellmi

) meslister noble.tien model 1975, B.cellml

) noble_difrancesco,denyer model_1989.cellmi
noble_model 1962.cellml

noble_model 1991 cellml

noble_mode 1958 cellml
] noble modil199_otendeccelimi
] noble model1998_stretchcelml

] noble modeL 200t celimi

] noble noble_SAN_model 1984.celm
] noble_SAN_modeL1589.cellmi

] nygren. el model 1988.celml

] ponit modd_2001_endo.celimi

] pondit mode_2001_cpicelimi

) pendr

Edting

2

« i v
Fie Orgenser 5 x
Hx
T E swayel
+ 3 Sub-study 51
" noble_model 1962.celmi
noble_model 1951 celml B New
[noble_model 1998.cellml | % Delete |\ |
= study 22

DpenOR

RO Mey

ey

Delete the current folder(s) and/or link(s) to the current file(s)

_images/annotation05.png
/o prr — Physiome Model & |

~ € [} teaching.physiomeproject.org/pmr2_ricordo/query 45 BRQO% =

Search Site

You are here: Home

Simple ontology-based metadata query form

Ontology term to query
Start by typing the ontology term you wish to find, then select the desired term out of the possible terms to query with in the list presented by the drop down. A green
checkmark will indicate that the search will be valid for the term shown.

voltage-gated sodium

voltage-gated sodium channel activity (GO_0005248)
voltage-gated sodium channel blocker (CHEBI_38634)
voltage-gated sodium channel complex (GO_0001518)
clustering of voltage-gated sodium channels (GO_0045162)

positive regulation of sodium ion transport via voltage-gated sodium channel activity (GO_0090072)

teaching.physiomeproject.org/# Site Map | Accessibity | Contact

_images/image_antcommartresults.png
Physiome Model Repository
Workspace: |http://teaching.physiomeproject.org/pmr/workspace/1c7

Ontological term v | Anterior communicating artery [FMA_50169] Search

Blood Vessel in MR Images [#, Anterior communicating artery]

_images/exposureeg1.png
Bondarenko, Szigeti, Bett, Kim, Rasmusson, 2004
Model Status

This CellL mdelrns in both OpenCell nd COR t reproduc th th ac
Bublicaton. Thi model represents the APICAL CELL variant a deseribed i Bondarenko o i+ 2008

Model Structure

ABSTRACT: We have developed a mathematical mode f the mouse venriclar myocyte acso potental (47)from
Vokage-camp dats of the underyng curent and Caz-+ ransients. Wherever possble, me uted Markor models o
Fepresent the mlecuar structure and funchion o fon hannls. The model ncudes detsled mtracellar <
it simlation o oclzed events such 38 sarcsplasmic CaZ+ rlesse o & smal racella volume
copasmic et Traneportar-mecdated Ca2s fures from the bl crossl ae cosely matched to
rtd values and predic stmulation rate-dependen changes n Ca2+ ransiets. Our model
Feproducesthe propertie o cadiac myocytes from tmo differen regions ofthe hear: th apex and the septum. The
Septum has 3 relately prolonged AP, wich reflcts rlately smal conrbutin rom the rapid ransent autward K+
mouse mode s be used o simulae he behavir of genetical modiied wansgenic mice

The origina paper rference i cted below:

Computer model of acti

ctentil of muse venicuar myocytes, Viadini €. Bondarenks, GyulaP. Stige, Glenna .
andall L. A ssmusson, 2004, American Joumel of Physclgy, 247, KI78-HIA03, Puied

L

Schematc iagram of the mouse model e curents and calium flues.

¥ ¥ [N

Source
Derivd from merkepace Bondarenio

Collaboration

o begincallaboratng on s work
fesue thiscommand

hg clone http:/ teaching phys:

Downloads
& Complte Archive as t52

Navigation

Computer madel o acson potentl of
e verrcsiar myocrtes (pica
ol Description)

Computer model o acion potents of
mause ventnclar myscrtes (Sepal
CellDescription)

_images/go-home.png

_images/tut1-pushchanges.png
© 8 0 08 | | pespuiene| omens |

Remote REpOSHON: U v ourping changusr oo rspouton JESESEE
ol [ocal =] [docimentsvepositors. modelsiBesier_Revter_tests

[ROR—— Remeaats
s T 1| e ey
Y E = == :

Gocumentsieposiiony_models Beeler R
Dougal Cow.. Didocumentsirepositary_modelsipesler_re

_images/cross.png

_images/constant.png

_images/plugin_wizard_configuration_1.png
a Workflow Step Wizard

v/ Define 'ldentifier’ configuration value

Label Default Value Add

AWN

N

<Back || Next> || Cancel

_images/INa-annotation-step1.png
]
3
£

® 1962_noble_freeRunning
» @ Units
v @ Components
> @ time
» @ stimulus_protocol
> B parameters
® model
» @ membrane
> @ sodium_channel_m_gate
> @ sodium_channel_h_gate
» @ potassium_channel
» @ potassium_channel_n_gate
» @ leakage_current
v @ Groups
» @ Group #1
» 3 Connections

<D

n62.cellmi @
@il SN ——

(e PR)|

sodium channel activity
sodium channel blocker
sodium channel complex
sodium channel inhibitor activity
sodium channel modulator
sodium channel regulator activity
voltage-gated sodium channel activity
voltage-gated sodium channel blocker

Voltage-gated sodium channel complex

G0:0005272
CHEBI:38633
G0:0034706
G0:0010871
CHEBI:30000
G0:0017080
G0:0005248
CHEBI:38634

G0:0001518

HEEEEREEE

There is no metadata associated with the current CellML element...

Qualifier - .
Model Element | ————» | Annotation

Represents Represents

Relationshij .
Biological Entity A | — "% | Biological Entity B

 version or an instance of the subject of the referenced resource (*Biological Entity). This relation

may be used to represent, for example, the ‘superciass' or ‘parent form of a particular biological entity.

uoneEIouUY

_images/tut1-editcellmlfile.png
PCENY and COR CelIML environments. A PCENV session file is also associated |
this model.
</para>

T_

I

</para>
</section>

B <sects id-"sec_structure"

<titleomodel Structurec/titles

2 <para>

2 para>

_images/plugin_wizard_identify_1.png
Step Name: X «—1
Package Name; 2
Icon: -« 3

< Back Cancel

_static/comment-bright.png

_images/edit-copy.png

_static/comment-close.png

_images/downloading-searches1.png
Physiome Repository Navigation

Main model listing Physiome Repasitory

The st ofprocessed mde! exposures(formats 100 pr
Pages generated from the metadata they conan. ARerativey, 1ou may start bosing ia the categeies that are Isted

1 full), whichare modes that have documentation

Fiease ote: Comments aboutthefuncona tatus o curstion sttue ofthe models ithin
ofthe CalM_ Model Repastory cura
700 have 3 query oresue with camments made on e e

s repastory are the oinans
5 We doour best to accurately represant these models, but lease contac s #

CellML models by category.

FieldML models

trythe Ontloay b h engine.

_static/minus.png

_images/workspacehistory.png
uthor

Fied incarrectfure mage.

Ading HTML verson of documentation o the model.

dded images n i and svg format

commiting versionts of becle_reuter_

commiting versionds of beler_reute.

commiting versiont? of beler_reuter,

commiting versionds of belar_reuter_1977

. e 1 L

s fien 101 (5

w7 e 1) (5
1977 e 101 (2
1977 e 101 L2

_images/SingleCellViewScreenshot07.png
Property Value Unit

Name Euler (forward)
Step 001 milisecond

i2 Graphs.

Edting

H

Value

environment.time | membrane.V
& Model Current
X environment time
v membrane
i2 Parameters
Value Unit B
-0

oms mispecn 7
i g

12 microF_per_cm2
-407361405576... millvolt
-0.72842074996... millivolt/millse...

‘Runtime: vaid,
Model type: ODE.

Simulation times 0.001 s using Euer (forward).
‘Simulation time: 0.022 s using Euer (forward).

5 ofpus

_images/emptyWorkspace.png
A AR A
© 0 0 /s vpr 2014 wtorial - Notle x | 5

& - € [teaching.physiomeproject.org/workspace/1c9 45 BBoOy =

[s rome o ortpmces e — oot e e]

You are here: Home / Workspaces / VPH 2014 tutoria - Noble 1962 model (andre)

ver _ ROF Indexin

VPH 2014 tutorial - Noble 1962 model (andre)

Exposure Information
No simplified view available for this workspace a5 no related exposures were found.

Workspace Summary

Deseription
A workspace to demanstrate the use of the repository with CellML models.
Owner
David Nickerson <davi

ickerson@gmail.com>
URI for mercurial clone/pull/push

Rt/ caching.phySiomEprojec.org/ Workspace/ 169 e
Files

Filename

©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_static/comment.png

_images/n62-initial-results.png
0 ¢ -,

®o4 ¢ 8

Editing

Simulation
Property [Value | Unit 1
Starting point 0 ms B
Ending point 5000 M M——
Point interval 1 ms N
2 Solvers 7
Property [Value | Unit]
v ODE solver
Name cvoDE 20
Maximum step 0 ms
0|
Interpolate sol... True 1
i Graphs e
property [Value]
» M timetime | model.membraneV
50|
r T T T
o 1000 200 3000
1000 -
500
i2 Parameters 500 |
Property [Value | Unit
v model 1
v leakage_current
-60 mv 400
0 mS_per_mm2
0 UA_per_mm2 9
012 UF_per_mm2 200
UA_per_mm2
o
T T T T
STper_mm2 o 20 00 500

| 1Users/dnic019/shared-folders/projects/AB
Runtime: valid.

Model type: ODE.

Simulation time: 0.018 s using CVODE.

~tutorials/vph2014/opencor-tutorials/models /n62.cellml

_images/extending06.png
Editing

Ending point 5000

Point interval 1 ms
i Solvers
Property [value L unit
v ODE solver

Name CVODE

1e-07
1e-07
True
v Graphs
Property [Value
J
5.000]
00|
00|
2 Parameters
property [Value | Unit]
v leakage_current
mv
mS_per_mm2
uA_per_mm2 1
200
UF_per_mm2
uA_per_mm2 i
mv.
mV/ms - : ;
v _potassium_channel 200 600 1000

Runtime: vali
Model type: ODE.

Simulation time: 0.012 5 using CVODE.
Simulation time: 0.063 5 using CVODE.

_images/revisioncreateexposure.png
1977 @ fdd29a005ffc /

_images/synchronize-form.png

_images/FileOrganiserWindowScreenshot03.png
File View Tools Help

B study#3.

_images/connected_MAP_1.png
Fle Edit Project Tools Help

MAP Client -

Imapclient-workflows/BloodVesselAutoSegmentation

Source

Image Source

Zinc Data Source

Zine Model Source
Sink
Point Cloud Serializer

Segmentation

Automatic Segmenter

Segmentation

General

CellML Model Chooser

_images/SingleCellViewScreenshot06.png
4e+307

Property Valve unt
+ ODE sover
Name Euler forward) 24307
siep i milsecond
v Graphs_
value
2 e,
2l & Mosel Cument E o
X envionmentiime
< Y membraney
H
204307
2 Parameters
Property Valve unt -
[y 0 E
- oors mills_per.cm2 1
nan microA_per_cm2 307
2 micoF_percm2
= millivolt
nen millvotymilis..

5 ofpus

D:\Dropbox|0penCOR|\Hodels\noble_model_1962.cellml
‘Runtime: vaid.

Model type: ODE.
‘Simulation times 0.001 s using Euer (forward).

_images/plugin_manager_2.png

_images/list-add1.png

_images/synchronize-1.png
0 » EMBC-twtoral » 17e »

Organize » Includeinlibrary » Sharewith v New folder

Name Date modified Type Size

X Favorites

B CREOR P™H Xx,oe oI

_images/hgUpdate-1.png
Organize Include in library +

New folder

¢ Favorites

m 5items

Date modified

29/06/20136:56 p.
29/06/20136:56 p.
29/06/20136:56 p.
29/06/20136:56 p.
29/06/20136:56 p.

% BE ¥

Sortby »
Group by »

Customize this folder...
Paste

Paste shortcut
Undo Delete

Developer Command Prompt

Share with »

iz

Hg Commit...

Hg Workbench

SVN Checkout...
TortoiseSVN »

B CREOR PH XX, H©

View File Status.

Shelve Changes
Visual Diff

Add Files...
Revert ils...
Rename File...
Forget Fle...
Remove Fils...

_images/wizard2.png
Source
Derived from markspace Becler

I e e s s e el e e e

Exposure Wizard

once the buld Buton i acivated, the expoted structure of s xporure can be acessed at

Collaboration

o begin callboratingon s wer
fesue thiscommand

hg clone http://teaching.phys:

View Generator Downloads
The seected enerator wil be usd to genarats the ien for the expesur index, or theroct

& Complte Archive as t52

The saurc for the above generator. The selected fle must b compatile withthe sel

Documentation File
thecurrent e will provids the dta from hich the document i be generated from

_images/CellMLAnnotationViewScreenshot07.png
® Opencor
File View Tools Help
noble_model_1962.celml (B
@ noble_model 1962
4 @ Units
> @ milisecond S
> @ permilisecond

. : milivolt Sodum channel reqator actity w© 0017080
> @ per.milivolt
b @ per_millivolt_millisecond ‘voltage-gated sodium channel activity
> @ mills per_cm2
> @ microf per.cm2
> @ micro_per cm2 'voltage-gated sodium channel complex
4 @ Components
environment

‘Qualifier: [piosVersionof

00005248

B

i

‘voltage-gated sodium channel blocker CHERL:38634

G0:0001518

<N

membrane
sodium_channel
“’:‘“'“—‘:"""‘:—;“—9'1'“ ‘There is no metadata associated with the current CellML element...
sodium_channel_h gate
potassium_channel
potassium_channel_n_gate
leakage _current
4 @ Groups

> @ Group 1

> & Group 22
4 3Y Connections

> 8¢ Connection #1

> 88 Connection #2

> 88 Connection #3

> 88 Connection #4

> 88 Connection #5

> 88 Connection #6

> 8¢ Connection #7

> 82 Connection 28 Home Browse Download Web services Documentation = Contribute

> 8 Connection

> 8 Connecton 10

onerouy WD

Edting

)

Simuation

)

‘Exemples: ontology. snzyme. Japen. EMBL Categories & toch

Identifiers.org | About #. Feedback

Nata ~nllantinn: (Aana Nntalan g

_images/newWorkspace.png
o6 | s Workspaces

& & C [teaching.physiomeproject.org/workspace/+/addWorkspace BROg =

[rosenveme | o ortpace | —bpenres | peesmeraten | owcaeen]

You are here: Home / Workspaces

Contents Egit_ Workspace Management _Shoring _ Layout

Create a New Workspace
Title

VPH 2014 tutorial - Noble 1962 model (andre)

Deseription

A workspace to demonstrate the use of the repository with CellML models.

Storage Method
‘The type of storage backend used for this workspace.

©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_images/annotation04.png
ro 0@ Og =

Cell Migration
Circadian Rhythms.

Electrophysiology

Endocrine
Excitation-Contraction Coupling.
Gene Regulation
Immunology

Ton Transport

Mechanical Constitutive Laws
Metabolism

Myofilament Mechanics
Neurobiology

PH Regulation

PRPD.

Signal Transduction
Synthetic Biology

FieldML models
Searching

Searching of models can be done anywhere on the site using the search box on the upper right hand comer. Alternative try

the Ontology based search engine, Mmmmmmmmmmmn

©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_images/autosegmentation_image_owltermscompleter.png
Physiome Model Repository

Workspace:

Ontological term v | [anterior communic| || Search

Anterfor communicating artery [FMA_50169]
Anteromedial central branch of anterior communica
Branch of anterlor communicating artery [FMA_796
Trunk of anterior communicating artery [FMA_76068]
Trunk of branch of anterior communicating artery [

_images/FileOrganiserWindowScreenshot04.png
File View Tools Help

Fie orgariser 5%
=X
4 & sudy A
Sudy 2 B oNew
= study 53 (X Delete [y

Delete the current folder(s) and/or link(s) to the current file(s)

_images/HelpWindowScreenshot01.png
File View Tools Help

F=5(EoR

Edting

Simulation

DpenOR

UoRE3oUY WD

WD Mey

ey

OpenCOR T

OpenCOR is a cross-platform modelling environment,
which can be used to organise, edit, simulate and
analyse CelIL files on Windows, Linux and OS X. It
‘can be downloaded here.

Various information about OpenCOR and its use can
be found in the following pages:
= Supported platforms
= User interfaces
= Command line interface (CLI)
= Graphical user interface (GUI)
= Plugins
= Editing
= CellMLAnnotation\View
= RawCellMLView
= RawView
= Miscellaneous:
= CelluLTools
= HelpWindow

= CellMLModelRepositoryWindow
= FileBrowserWindow
= FileOrganiserWindow
= Simulation

= SingleCellView

= Known issues

= Known limitations

= What is new?

‘Some more general information about OpenCOR can
be found under-

= Licensing
= Team

Copyrignt 20112014 v VPR -|

_images/screenshot03.png
CellVIL Model Repository =]
Fiter: (e
570 CellML models were found é

« APrimer on Modular
Mass Action Modelling
with CellML

« Ateview of cardiac
cellular
electrophysiology
models

o Activation of spaK

o Activation of spaR

_images/extending03.png
Bl <comphent cmeta:id="time_component" nare=

rigble creta:id="time" initial_value="

component>

El/<component cmeta:id="stimulus_protocol" name="
<variable name="TStim" initial_value="0., lic_interface="out" units="uA_per_mmsq"/>
<variable name="time" public_interfage®in" units="ms"/>

</component>

0" name=yefme” public_interface="out" units="ms"

§
S| <component creta:id="interface" name="model">
E varicble name-"time" private_interface="out" public_interface="in" units="ms"/>
<varicble name="T_stin" private_interface="out" public._interface="in" units="uA_per_m2!
Find: £- g_k_add O |e»
Replace Replace & Find Replace All

Replace with:

&

uopeIouUY IR

_images/CellMLAnnotationViewScreenshot04.png
File View Tools Help
noble_model_1362.celml (3
@ noble model 1962

& g vt (i Sl
@ millisecond. — +
@ per g
@ millis_per_cm2 Please enter a term to search above...

@ microF_per_cm2
@ microA_per cm2
Components

B environment

& membrane
® sodium_channel
8 sodium_channel m_gate ‘There is no metadata associated with the current CellML element...
8 sodium_channel_h_gate
8 potessium_channel

8 potessium_channeln_gate

B leakage_current
encodes

o 1
& Grovp 22 o Qualifier
o..uﬁ:.s [Model Element |

% Connection #1 S
X Connecton®2
X Connection 3
X Connecton 4
X Connecton s

Connection #6 Relationshif P

8 Comecin (Biological Entity A | ———"""» | Biological Entity B
X Connectons

X Connectons
2 Connecton #10

UoRE3oUY WD

Edting

Simulation
B3 Mey

Annotation |

ey

Represents Represents

I

Encodement

‘The biological entity represented by the model element encodes, directly or transitively, the subject of the
referenced resource ("Biological Entity B"). This relation may be used to express, for example, that a specific DNA «

Lok up the qualiier

_images/folder-new.png

_images/list-add.png

_images/RawViewScreenshot03.png
File Edit View Tools Help

noble_model_1962.cellml (£

ol vecsion= 10" ool T

>

Edting

UoieiouY W

Simulation

W3 Moy

ey

“ i D
Line:1, Col:1 INS

_images/CellMLAnnotationViewScreenshot06.png
File View Tools Help

‘noble_model_1962.celml £

@ noble model 1962

4 @ Units

@ millisecond

@ per_milisecond

@ millivolt

@ pemillvolt

@ per_millvoltmilisecond
@ mills_percm2

@ microf_per_cm2

@ microh_per cm2
Components

8 environment

@ membrane

@ sodium_channel

8 sodium_channel_m_gate
8 sodium_channel_h_gate
8 potassium_channel

Edting

B potassium_channel_n_gate

>
> 3 Connection#3
> 29 Connection #4
> 2 Connection =5
> 2 Connection %6
> 3 Connection 7
> 2 Connection %8
> 2 Connection 29
> 2 Connection =10

Qualfier: poistersondF -] (@)
Term: [sodum charne]][4
name Resource
aioride sensivesodm chamel aciy w
itering fvotagegetedsodm e = onse (@)
T R e ey, @ comer @ .

‘There i no metadata associated with the current CellML element...

_images/map_client_barebones.png
oo MAP Client VoW

Fle Edit Project Tools Help

Point Cloud Serializer

_images/computedConstant.png
L

_images/RawViewScreenshot04.png
File (Edit) View Tools Help
~ Bndo Cuiez
[<]#* Redo Ctley Frutf-gme>
< " cmeta:id="noble model 1962" xmlns
~ cut cuex f>
Copy CtileC second”/>
O Paste .
X Delete Del
4 FindReplace.. CtleF
Find Next B
Find Previous Shift+F2
o>
Select All CileA prefix="milli" unit g
<units mame="per_millivelt_millisecond"> 3
g mil1svolcn/s 2
3 millisecond”/> £
| <unics name=mmiliis per cm2v> -
3 <unit prefix="milli" units="siemens"/> f’
H <unit exponent="-2" prefix=rcenti’ units="metze"/> g
</unize> =
<units name="microf pes cm2">
<unit prefix="micro" unita="farad"/> z
<unit exponent="-2" prefix=rcenti" units="metze"/>
</unize>
<units name="microh pes_cm2">
<unit prefix="micro" units="ampeze"/>
<unit exponent="-2" prefix=rcenti” units="metze"/>
</unize>
<component name="envizonment”>
<variable name="cime" unita="millisecond” public_interface=rout’/>
</component>
<component name="membrane”>
<variable name="V" initial value="-87" units="millivolt” public interface
<variable name="Cn" initial value="12" units="miczof pez cm2"/>
cwariahle name=Mrimef nnira=tmillsieecand® nuhlic Snrarfa SELVAS =
Pl v

Line:1, Col:1 INS

_images/top_annotation_1.png
av

Location:

Annotation Tool

Annotation Tool

port|

v (port v (port v

Add

_images/autosegmentation_image_antcommartresults.png
Physiome Model Repository
Workspace: |http://teaching.physiomeproject.org/pmr/workspace/1c7

Ontological term v | Anterior communicating artery [FMA_50169] Search

Blood Vessel in MR Images [#, Anterior communicating artery]

_images/tut1-commitchanges.png
2 ~|0O

T Jriemome

W beeler_reuter_1577_docmentation html |

ol —[0) x|
Branch: default Copymessage v Options (3
Parent: 12 (£dd29a005f fc) Minor fixto documentation, changedtitle.

Renoved paragraph about validation errors from the docuentatiod 2]

1

o o

[}

| # | . [z beeler_reuter_1577_documentation.htm

[68 -10,10 +10,6 @0 5
>
This model has been curated by Penny Noble using Flavio Fe
</p>
-<p>
-ValidateCellL detects unit inconsistency within this model
-</p>

d4 1 _'lll

commit_[v| _uneo cese

A

_images/annotation03.png
// i VPH 2014 tutorial - Noble |

C [teaching.physiomeproject.org/workspace/1c9/rdf_indexer 4% B9 =

Search Site

You are here: Home / Workspaces / VPH 2014 tutoria - Noble 1962 model (andre)

RDF Paths
Paths that will be indexed as RDF.

Apply | Apply Changes and Export To RDF Store.

_images/autosegmentation_pointcloud_configure.png
Configure - Point Cloud Store [OOSR

Identifier: [bv_point_cloud]

_images/SingleCellViewScreenshot10.png
Masimumstep 0 millisecond
Maximum num... 500

Relative tolerance 1e-07

Absolute toleran... 1e-07

Interpolate solut.. True

Edting

A2 Graphs

_ | Property Value
environment.time | membrane.V
& Model Current

H
z X environment time
v membrane
i2 Parameters
Property Value Unit B

-0.00042183054... dimensionless/...

icznl

ENa 40 millivlt a
@ 0 mills_per_ cm2
O gNoms 0 millS_per_cm2

‘Simulation time: 0.001 s using Euler (forward).
‘Simulation time: 0.022 s using Euer (forward).
‘Simulation times 0,001 s using CVODE.
‘Simulation time: 3,43 s sing CVODE.

5 ofpus

_images/commitAnnotations.png
@)+ fitertext 59 2 + () Branchidefault Copymessage ~ Options @

T v Sae(ce) | Prent 0 (6106385S2ace) Adding aniiin copyof the Nble 1S62)cardinccelular
[Using OpenCOR to add some annotations to my copy of the

@ M n62celiml celiml 28 INoble 1962 model.]

1

—<model xmlns="hip://www.cellml.org/cellml/1.0§" xmlns:cellnl
<units base_units="no" ‘>
'milli" units="metrer/>

3

‘milli" units="second"/>

[Commit 1) [ndo] [Close]

nav.xhtml

 Table of Contents

 		VPH 2014 - ABI Software Tutorial

 		VPH 2014 - ABI Software Tutorial

 		OpenCOR

 		A new CellML-based piece of work

 		Making use of annotations

 		Reproducing model behaviour in OpenCOR

 		Extending an existing CellML model

 		MAP Client

 		Setting Up Pre-requisite Software

 		Automatic segmentation of a three-dimensional image stack

 		Manually digitising an image stack

 		Preliminary CellML simulation step

 		Creating your own step

 		Auckland Physiome Repository

 		Auckland Physiome Repository - an introduction

 		Downloading and viewing models from the Auckland Physiome Repository

 		Working with workspaces

 		Tutorial on using CellML with Auckland Physiome Repository

 		Working with semantic metadata

 		Creating CellML exposures

 		Creating FieldML exposures

 		Embedded workspaces and their uses

 		CellML Curation in the legacy Physiome Model Repository

 		Glossary

 		OpenCOR

 		User Interfaces

 		Command Line Interface (CLI)

 		Graphical User Interface (GUI)

 		Plugins

 		Glossary

 		Musculoskeletal Atlas Project (MAP) Client

 		MAP Client Installation and Setup Guide

 		MAP Features Demonstration

 		MAP Plugins

 		MAP Plugin Creator Wizard

 		MAP Tutorial - Create Workflow

 		MAP Tutorial - Create Plugin

 		Glossary

 		Appendix A - Generating html documentation

 		Glossary

 		Tutorial to do list

_images/PMR-tut1-tortoisehgclone.png
View »

Armange cons By »
Refresh

‘Customize This Folder

paste.
PasteShortct

B T e—
o [Create Wpository Here:
et

Properties £ bl Settings.
® updte cons

i bout Tortiserig

_images/autosegmentation_autoseg_interaction.png
Fle Edit Proje

_images/exposurepublish.png
Reconstruction of the action pote:
fibres

of ventricular myo

Bioengineering nsiut, Unversy of Auckland
Model Status.

This madel has been curated by Penny Noble sing Favo Fenton's Jov code as & reference (See
W5 nevituaheart o/ for Java appltrenderng of mdel - Jva code 1 avadabl from Or Fenton) An artficil
ofthe publcaton. The mode s knomn t run and ntearte i the PCEny and COR CaML environments. A PCEny session
e i sso associated it this madel,

Model Structure

In contast o the ki Purkine foe o curent mades of . Nable (1362) and . MeAlster,D. Noble and &

Taen (1375), the G.W. Becer andH. Reuker 1977 mode mas developedto descrbe the mammakan verr

Dotental ot alheioic curents o the Purkine bre model are resent i vertrauar tasue; hrefore, s model
ha the MNT mode. The toal oic fu s divided it oy four dcrete, indiidul onc currents (see the Figure

below) The man addionl fetur ofthe BeclerReuter oni crrent model 3 r4presentatn of the ntraceltar

venticulr myacardial res, Beale, G0, and Recter, K. 1977 Jormal of

Reconstructon of the actn poten
Fhrscogy, 268, 177-210, pubhed 106

P L oy 4 v

-

T -

A schematic iagram descrbing the current lows acros the cellmembrane tha ar castred nthe B% mode.

Source
Derived from merkpace Becl

Collaboration

o begincallaboratng n his mork,
fesue thiscommand
hg clone http:/ teaching phys:

Downloads
& Complte Archive as t52

Navigation

Reconstructionof the acon potenial
of venrciar myocardil fres

_images/RawViewScreenshot02.png
® Opencor
Fle Edit View Tools Help
noble_mode_1962.celnl £3

?xml version="1.0" encoding="utf-8"?>
<model name="noble model 1962" cmeta:id="noble model 1962
<units name="millisecond">
<unit prefix="milli" units="second"/>
</units>
<units name="per millisecond">
<unit exponent="-1" units="millisecond"/>
</units>
<units name="millivolt">
<unit prefix="mi
</units>
<units name="per mil
<unit exponent="-
</units>
<units name="per millivolt millisecond">
<unit exponent="-1" units="millivolt"/>
<unit exponent="- units="millisecond"/>
</units>
<units name="milliS per_ cm2">
<unit prefix="milli" units="siemens"/>

Rl m—— ’
Line:1, Col:1 INS

Edting

units="volt"/>

T W | U R |

[Smatin

1i" units="volt"/>

ey

_images/FileOrganiserWindowScreenshot05.png
File View Tools Help

Fie Browser

=4 e

) LR Dynamic_model 2000.celml
] 1uo_rudy_Lmodel 1991 cellm

) mahajan_siferan_mode 208 cellml

] maleckar_greens
] matsuoke.model2003.celimi

trayanova_giles_model_2008.cellml

] meallster_noble_tien_ model 1975_Acliml
] meallster_noble_tien_model 1975_8.celiml
] noble difancesco,denyer model 989 celimi

noble_model 1962.cellmi

noble_model 199Lcellmi

noble_model 1998.cellmi

noble_model 1998_extended.cellm
noble_model 1998 stretch.cellm

noble_noble_SAN_model 1984.cellmi

IN]
I
| noble_model 2001.cellml
I
I

noble_SAN_model 1989.cellmi

. nygren.atalmodel 1998 cellml

_ pandit_model 2001_endo.cellml
_ pandit_model 2001 _epi.celiml
= "

Edting

2

DpenOR

RO Mey

ey

_images/CellMLModelRepositoryWindowScreenshot02.png
Filter:

Noble:

20 CellML models were found:

Difiancesco. Noble. 1985
Earm_Noble_1990

Fink._Noble_Virag. Varro. Giles. 2008

Gamy. Kohl_ Hunter. Boyett. Noble. 2003
Hilgemann. Noble_1987

Hunter. Mcnaughton. Noble. 1975
Iribe_Kohl_Noble_2006

Mcallister. Noble_Tsien. 1976

Noble_ 1962

Noble_2000

Noble_Difrancesco. Denyer. 1989
Noble_Noble_1984

Noble_Noble_ 2001

Noble_Noble_Bett. Earm. Ho. So. 1991
Noble_Varghese_Kohl. Noble_1998

Roux_Noble. Noble_ Marhl. 2006

Sakmann. Spindler. Bryant_ Linz. Noble. 2000
Stewart. Aslanidi_Noble. Noble_ Boyett_Zhang. 2009
Tentusscher. Noble. Noble. Panfilov. 2004
Tentusscher. Noble_Noble_Panfilov. 2006

Edting

Simulation

Dpen@OR

Uone3ouy WD

WD Mey

y

_images/RawCellMLViewScreenshot07.png
v _ (7 sogtum * L+ Treat)
dtime Cm
B <applv> 7
e
J ot
eistinec/ess o
L <o
Cmeress
L P
g
pstres
s>
prsenid

Edting

<prus/>
Jpe>i_sodzunc/ci>
<ei>ike/ci>
<ci>izeanc/ci>

Simulation

E </apply>
E </apply>
<ci>Cme/ci>
E </apply>
E </apply>
E </matn>
b </component>
<component name="sodium_channel">
<variable name=ri Na" units="microh per_cm2" public_interface="out"/>
<variable name="g Na max" initial value="400" units="milliS per cm2"/>

« i D

@ [57:30] MathML ci element references variable which doesnit exist.

Line: 57, Col:30 INS.

_images/FileBrowserWindowScreenshot02.png
File View Tools Help

Fie Browser

=4 e

Name

4 & system (©)
> i Program Files
4 0 users

4 (B Alan

3

(5 Contacts

Desktop

Documents

& Downloads

Lt Favorites

U Links
Pictures

(B Saved Games

0 searches

(8 Videos

> Public

3

b
b
b
b
b
b
b
b
b
b
b
b
b
b

[Evindows

Ui AppCompat

AppPatch
assembly

Boot

Branding

csc

Cursors

debug

diagnostics

DigitalLocker

Downloaded Program Fies

>

Edting

Simulation

Open@OR

Uone3ouy WD

WD Mey

y

_images/synchronize-2.png
(@ [l httpi/teaching physiomeproject.org/workspace/17e Mif——

s bl e |

Alias URL Alias URL
default hitp//teaching.physiomeproject.org/workspace/17e

_images/SingleCellViewScreenshot09.png
File View Tools Help

no_voi_model.celiml () | noble_model_162.celm 3

O@® €0 | mEwm =

Maximum num... 500
Relative tolerance 1e-07

Absolute toleran... 1e-07
Interpolate solut..._True

Property Value Unit
Starting point 0 millisecond.
Ending point 1000 millisecond
Point interval 1 millsecond
2 Solvers.
Property Value Unit
4 ODEsolver
Name. CVODE
Maximumstep 0 millsecond|

Edting

A2 Graphs

_ | Property Value
environment.time | membrane.V
& Model Current

H
“ X environment.time
Y membraney
id Paraneters
Value Unit B
0 millolt o
o0 mills_per_cm2

-156907758217... microA_per_cm2

12 microF_per_cm2
o X1 800210244780 milliunl

"Model type: ODE.
‘Simulation time: 0.001 s using Euer (forward).
‘Simulation time: 0.022 s using Euer (forward).
‘Simulation times 0,001 s using CVODE.

5 ofpus

_images/CellMLAnnotationViewScreenshot05.png
File View Tools Help
noble_model_1362.celml (3
@ noble model 1962

PR b

v @ milisecond Term: | biisHonoaT ‘|l*

o @ permillsecond biotePartof.

> & milioh B ———————————

b @ per_millvolt (e

o @ permillvolt_milisecond biothesTaxon

b @ mills_per cm2 e ervedkrom

b @ microF_per.cm2 modelispescrbeds, -

o @ microh_per.cm2

4 @ Components

L enronment s

b B membrane H

8 sodium chamnel 5
Z| > @ sodium_channel m_gate There is no metadata associated with the current CellML element... 4
£ @ ccdumchamnelh g 5

o peassiom channel
5|+ @ potesum chonne nsote E
5L eskoge coment H
3|« & oo

> & Group #1

© &8 Group 2 o Qualifier — 3

4 3? Connections Model Element Annotation) E

88 Connection #1
> 8¢ Connection #2
» &Y Connection #3 Represents Represents
> 88 Connection #4
> 8¢ Connection #5
> 3 Connection #6 - _Relationshi p
> 88 Comnection 7 Biological Enity A | ———" (" Biological Enity B
> 88 Connection #8
> 8¢ Connection %9

> 88 Comnecton =10 Hypernym

‘The biological entity represented by the model element is a version or an instance of the subject of the referenced
resource (‘Biological Entity B"). This relation may be used to represent, for example, the ‘superclass’ or parent «

_images/RawViewScreenshot07.png
Fie Edt View Tools Help
noble_model_1962.celml (B
<Faml vezsion="1.0" encoding="wtE-8"7>
<model name="noble model 1362 cmeta:id="noble model 1362 mlns
<units name="JEElsecona"s

<onit prefix="milli" wnit
<units>

‘nttp://w.cellnl.org/cellml/1.04" xmlns:cellml:

second”/>

<unit prefix="milli" units="volt"/>
</units>

<units name=

‘per_millivolc"s

<unic exponenter-1" prefixermilli" unic B
</units> =
<cunits name="per_millivlt_millisecond™ =

g mmillivolcn/s 2

H "mi11isccondn/> 5

| <unics mame-nmillss_per_om2v> E

] cunit prefix—"miliin unite="siemens”/> g

H <unit cxponenten-27 prefix-mcenti’ unite="metze"/> 2

b </units> =
inite name=microf_per_cmans

<unit prefix="micro" units="farad"/> é’

27 prefin-meenti” unite="metzen/>

<unit exponent:

</units>

<units name="microh per_cm2">
<unit prefix="micro" units="ampere"/>
<unit exponent=r-2" prefix=rcenti” unit

</units>

<component nane:

"metren/>

nvironmenc™>

< CoseSemie [\ | smite—"millisecond” public interface=rous”/>
</ hole Words Only u
<comp) >
<) Regular Expression v
0 le»

Replace Replace 8Find _Replace Al

_images/map_client_gui.png
MAP Client
Fle Edt Project Tools Help

Image Source

Sink

a Point Cloud Serializer

_images/CellMLAnnotationViewScreenshot03.png
File View Tools Help

noble_model_1962.cellml (£

Edting

® noble_model 1962

4 @ Units
» @ millisecond
> @ permillsecond
> @ milivolt
> @ per.milivolt
> @ per_millvol_millsecond
> @ mills_per_cm2

> @ microF_per.cm2
o @ microA per.cm2
4 ® Components
> 8 environment
membrane
>
> 8 sodium_channelm_gte
> 8 sodium_channelh_gate
> 8 potassiom_channel
5 8 potassium_channel_n_gte
o B leskage current
4 8 Groups
b & Group#1
b & Group#2
4 32 Connections
> 2 Connection =1
¢ Connection 22
8 Connection 3
8 Connection #4
8 Connection 5
¢ Connection %6
8 Connection#7
¢ Connection 58
¢ Connection 20
¢ Connection #10

Please enter a term to search above...

‘There i no metadata associated with the current CellML element...

RO MEY

ey

_images/autosegmentation_workflow.png
av

Fle Edit Project Tools Help

MAP Client -

Jmapclient-workflows/BloodVesselAutoSegmentation

Yow

Source
Image Source
Sink

ﬁ Point Cloud Serializer

Segmentation

Automatic Segmenter

Segmentation

General

CellML Model Chooser

_images/pmr_commit_workspace.png
PMR Workspace Commit [OROXSX)

PMR Workspace Commit

comment: |Lazy commit message from MAP Client.

|/ Skip Cornmit ||/ Commit Local || / Cornmit PMR || @ Cancel |

_images/screenshot01.png
« APrimer on Modular
Mass Action Modelling
with CellVL

o Areview of cardiac
cellular
electrophysiology
models

« Activation of spaK

570 CellML models were found: é

Fie Browser

Ee4 e
Name -
4 & stem(©)
o Ui Program Files
4 Users
4 [B Aan
> 5 Contacts
» I Desktop
> 1) Documents
R

Edting

Simulation

Fie Organiser

X

Dpen@OR

oerouy WD

WD Mey

ey

OpenCOR Help.
5 @ P €
OpenCOR T

OpenCOR is a cross-platform
modelling environment, which can be
used to organise, edit, simulate and
analyse CaIIIL files on Windows,
Linux and OS X. It can be
downloaded here.

Various information about OpenCOR
and its use can be found in the,
following pages

= Supported platforms
= User interfaces
= Command line
interface (CLI)
= Graphical user
interface (GUI)
= Plugins
= Editing
= CellMLAnnotation
= RawCellMLView
= RawView
= Miscellaneous
= CelluLTools
= HelpWindow
= Organisation
= CellMLModelRepc, |
= FileBrowserWindc
= FileOrganiserWin¢
= Simulation
= SingleCellView
= Known issues
= Known limitations
= What is new?

Copyrigni 201120148 VPR ~|

i 5

_images/autosegmentation_image_configureblank.png
a nfigur

dentifier:

Local ile system || Physiome Model Repository

Location:

Image Source Type: | from file extension v

<

@ cancel

_images/my-workspaces.png
My Workspaces

by admin — last modfied Sep 21, 2013 03.26 AN

Alisting of workspaces that are created/owned by you.

1970 — by Demo User — last modiied Aug 22, 2014 02:05 M
Chay, 1997 by Demo ser — st modfed Aug 22, 014 02:06
Cooling, Hunter, Crampin, 2007 — by Demo User — last modiied Au
Experiment reproduction model — by Demo User — a5t modfied Aug
eter, 1999 — by Dermo User — last modiied Aug
by Do User — st modifed Avg
Luo, Rudy, 1991 — by Demo User — last moddied Aug 22, 2014 02:06 P
Metadats demonstration — by Dermo User — last modfed Aug 22, 2014 62:24 PM
Tentusscher, Noble, Noble, Panflov, 2004 — by Derms User — last modfied A

_images/CellMLAnnotationViewScreenshot02.png
File View Tools Help

noble_model_1962.cellml (£

@ noble model 1962 L

4 @ units & EBpndal -] (@)

@ millisecond &= Collapse All +*

o remisons (#]

& niiolt Remove Current Metadata

@ per_millvolt Remove All Metadata

@ per_millvolt_millsecond

: _per_cm2 Please enter a term to search above...
microF per cm2

@ microh_per_cm2

Components

B environment

B membrane

B sodium_channel

8 sodium._channelm_gate There is no metadata associated with the current CellML element...
B sodium_channel_h gate

B potassium_channel

Edting

B potassium_channel_n_gate

L]
i
i
A
TIPS e

ey

>
> 3 Connection#3
> 29 Connection #4
> 2 Connection =5
> 2 Connection %6
> 3 Connection 7
> 2 Connection %8
> 2 Connection 29
> 2 Connection =10

Expand all the children nodes

_images/text-csv.png

_images/workspacesubmit.png
Demonstration workspace for a mod

Exposure Information

Workspace Summary

Demo User <demousec@erar
R for mercurta

Files
Filename size oate Options

_images/screenshot02.png
570 CellML models were found:

« APrimer on Modular Mass Action Modelling with Cell\L
« Areview of cardiac cellular electrophysiology models

« Activation of spaK

« Activation of spaR

 Adrian_Chandler_ Hodgkin. 1970

da B_1000

OpenCOR

4 & system (©)
> i Program Fles modeling emvironment, which can be
4 U Users used to organise, edit, simulate and
4 B Aln analyse CaIIIL files on Windows,
b [E Contacts Linux and OS X It can be
B Desitop downloaded here.

E Documents Various information about OpenCOR

B ot and its use can be found in the,

U Links

B mosic Copyriant 201120149 VPR ~|
Pl —m— .

8 x

Uoneiouy WD

Edting

Simulation
WD Mey

ey

b
b
b
b
b
b

_images/tut1-tortoisehgclone.png
View »

Armange cons By »
Refresh

‘Customize This Folder

paste.
PasteShortct

B T e—
o [Create Wpository Here:
et

Properties £ bl Settings.
® updte cons

i bout Tortiserig

_images/RawCellMLViewScreenshot01.png
Edting

Simuation

<

Fomt versio
[<model name="noble model_1962" cmeca: i

1,07 encoding=ratt 877> 3
/s, cellnl .org/cellnl/1. 04" xmlng:celln[])

<units name="millisecond">
<unit prefix=rmilli" unic:

</units>

<units name="per_millisecond”>

second”/>

<unit exponent=r-1" units="millisecond"/>

</units>

<units name="millivolc™>
<unit prefix="milli" unic:

</units>

<units name="per_millivolt">

volen/>

[CEITAT)

<unit exponent=r-1" prefix="milli" units="volt"/>
</units>
<units name="per_millivolt millisecond">
<unit exponent=r-1" units="millivolt"/>
<unit exponent=r-1" units="millisecond"/>
</units>
<units name="milliS per cm2">
<unit prefix="milli” units=rsiemens"/>
<unit exponent="-2" prefix="centi” unit:
</units>
<units name="microF_per cm2">
<unit prefix="micro” units="farad"/>
<unit exponent="-2" prefix="centi” unit:
</units>

] v

e Mey

Line:1, Cok:1 INS

_images/screenshot05.png
File View Tools Help

_images/SingleCellViewScreenshot12.png
F=5(EoR

Masimumstep 0
Maximum num... 500

Relative tolerance 1e-07
Absolute toleran... 1e-07
Interpolate solut.. True

millisecond

Edting

Graphs

H

Property Value

membrane.V" | membrane.V.

Property Value Unit

O 1

microf_per_cm2
ov 21550670882, millvolt

m

o 00010146227... miliolymilise..

potassium_channel

&

&

&

‘Simulation time: 0.001 s using Euler (forward).
‘Simulation time: 0.022 s using Euer (forward).
‘Simulation times 0,001 s using CVODE.
‘Simulation time: 3,43 s sing CVODE.

_images/zinc_model_icon.png

_images/SingleCellViewScreenshot04.png
Edting

H

icto

v ‘Simulation 1,000 4
lue
. i —]
1o icond
? ilcond
S a0 |
lue v
Euler (forward) 7
1 -
Graphs v
Property Value €109
400-|
0 e
lue v -
| 2001
. izscond
-]
oo il per.cm2
. ek pr 2

D:\Dropbox|0penCOR|\Hodels\noble_model_1962.cellml
‘Runtime: vaid.
Model type: ODE.

5 ofpus

_images/edit-delete.png

_images/go-next.png

_images/FileOrganiserWindowScreenshot01.png
Dpen@OR

_images/RawCellMLViewScreenshot06.png
® Opencor
File Edit View Tools Help
noble_mode_1962.celnl £3

dv _ - (lzva +i+ lLeak)
dtime Cm
T N =
= <apply>
<eq/>
=] <apply> @
e
eistinec/ess
Cmeress

<apply> The CelIML file is valid.
<aivide/>

=] <apply>
<minus/> o]
<apply>
<plus/>
<ci>i Na</ci>
<civi K</ci>
<ci>i_Leak</ci>
L </apply>
L </apply>
<ci>Cme/ci>
L </apply>
L </apply>
E </matn>
b </component>

Edting
i

Simulation
Wp0 Moy

ey

] v

Line: 42, Col: 20 NS,

_images/metadata-opencor-start.png
He_Vew Dok
hodgkin_udey 1952 celml ©

|__hodgkin husiey squid axon 195}
® unis

@ millisecond

® per_milisecond

& i

$ i ranecns
i per

& et i m2

@ mcrox per cms

- @ Components

arorane

ot thannel

Sedum-channelm_gate

Lo chamen owe

porasaiom channel

= Dotasam channeln_ gt

@ fakage-ciment

& Group =2
Connections
 Comnection #1
N Comection 2
¥ Comection #3
¥ Comection =2
¥ Comection =5
N Comection =6
¥ Comnection 7
¥ Comection =8
N Comection =5
N Comection 10

Sorry, but the CelML Annotation view does not support this type of
metadata.

(Please clck here F you want o remove the existing metadsta.)

Subject

odgkin ey squd_swon 1952

hodgkin ey squd_avon 1952

i #66cadds e 3030 5l ee 2458226668

i #66bcadds <des 4030 51 0 24568226665

i +638¢d505.91 5 4388 96 es.33dcda036¢48

hodgkin ey squd_awon 1952

hodgkn ey squd_awon 1952

a2 8Tpnor2

i sUpnot2

e svpnot2

e svpnot2

e svprot2

e Upnot2

hodokin hudey squid_awon 1952

odokin ey saud_avon 1952

odgkin ey sauid_avon 1952

i 82105961 Daba 47624577 £31a770cf0d

o #21069261 06ba.4762.9877 431477 0cf0d

o #635¢1370.80¢1 4ba2-aead-441 70580738

Fof #52a34541 4953-40fa-852¢-be53615cb10

Fof #52a3450) 495a.40fa 852¢ basa6c19cbL0

o #30675938 eafa-4790.8365.1 70475 eal

o 830675536 e3fa.4790.8365.16754475 eaL

o 801723101 /974005 ade] 613534338361

o #0f7 22101 54974005 ade) 81 353e33836¢

o 80F7 23101 5497 4005 adl 81 3534338361

o #53a3450] 498a-40fe 8521 besa6el acbl0

i 551 2600¢5 26704406 84551 dafe a0 5

Fif 551 3600c5.2470-4 b6 84531 dafe7reb01 5
0-4483 6cc7 seHezielbez

BRI oo |

Predcate
etpupurtorg/dc/elements/L 1tle

et calm orgmetadatarl Oscommert

et v, org| 599102122 1 syntawens svalue
Petppurtorg/dc/elementsi1. 1 creator

Ut 0rg/2001NcarG i3 02N

et el org/basl OsPubmed_d

et el orgmetadata/simalacion, Oesimalat
et e celmlorgmetadatassimuation’. osboundi
U w3, 01 9802122 1 syntawens st

et i el orgmetadata/simiiation. Oemaimt
et el orgmetadatassimuation’ Osendng
et el orgmetadata/simalationn Oenonsta
U w3, 01 9502122 10 yntans st

et e celmlorgmatadatal. Osspecies

Ut v celmlorg/metadatar. 0=bio_enty
ttphwmcelmLorgbas1 Osrefarence

Pt v celmlorgibgs/1. 0=Pubmed 1d

Pt celmlorgbas/1. Ozjoumalaticle

Pttppurt org/dc/elements/1 1 creator

P w091 999102122 1 symtax s stype

Pt . org/1 99502122 r yntanss 2

Pt w3, 0199502122 1 ymtax s sype

Pt w3, 0r9/2001 card 13 Ol

P w3, 01972001 card <3 OFamity

P w3, 092001 card <3 OwGvers

et e, org/200 Neard a3 Onther

et w3, or91 99902122 rd symtax e L

et w3, or9199/02122 1 syntax s siype

et w3, or9/2001 card a3 Ol

et w3, 0r9/2001 card a3 OaFamily

_images/reproduce03.png
AR e A = m
© O O/ s emBC 2013 Tutorial - Nob x 2

& 5 C { https://models.physiomeproject.org/w/andre /embc13-n62/@@shortlog 4% BOOy =

You are here: Home / User Workspace / andre / EMBC 2013 Tutorial - Noble 1962 reprocucibilty.

vien [CESR Fies ork

Shortlog

O]
.t

Date Author Lo Options Exposure

14 David tweaking the potassium current to decrease the self-pacing frequency of this model; updating the. [fles] ‘The Noble (1962)
Nickerson documentation and results to llustrate this change. Itgz] [zip] cell model

David adding an HTML document to use as the documentation for this warkspace and to use whemmsrestingrenp [fles] The Nobie (1962)
Nickerson exposure [tgz] [zip] cell model

David adding screen shot from OpenCOR showing the self-pacing action potentials. [fles]
Nickerson [t2] [zip]

adding initial version of my Nable 1962 cardiac cellular electrophysiology model. This version of the.

_images/plugin_wizard_introduction_1.png
Workflow Step Wizard

This wizard will help get you started creating your own plugin for the MAP
Client,

MAP Client

Workflow
Step Wizard

¢

Next > || Cancel

_images/autosegmentation_image_configurepmr.png

_images/RawCellMLViewScreenshot02.png
AV —(wticting
dtime Cm
E <math xmlns="http://www.w3.org/1998/Math/MathML"> A
g <appivs
<eq/>
=] <apply> @
e
ot
e osesmecsens
L o
o
| <rurmres
Pty
J Pt
Lonsers
piitnd
s
B asens
eyt
gty
L P
[<apres
e
L <rapmres
[P
[P
oo

il | v

Edting

Simulation

Line: 42, Col: 20 INS.

_images/error_connection.png

_images/configured_MAP_1.png
Fle Edit Project Tools Help

MAP Client -

Jmapclient-workflows/BloodVesselAutoSegmentation

Source

Image Source

Zinc Data Source

Zine Model Source
Sink
Point Cloud Serializer

Segmentation

Automatic Segmenter

Segmentation

General

CellML Model Chooser

_images/fieldmlexposureexample2.png

_images/SingleCellViewScreenshot14.png
simple._dae_model.celm (]

peridic-stimulus.ml)

Property Value
4 ODEsolver
Name CVODE

Maximumstep 05
Maximum num... 500

Relative tolerance 1e-07
Absolute toleran... 1e-07

E| imerpolatesolut. e

Elia Graphs.

| propery Value

time.time | modelV
H
2 Parameters

Value Unit
15 m
0002573696363... mV
000257369636... mV
00007985 mime

D

100

Model type: ODE.
‘Simulation time: 0,003 s using CVODE.

D:\Dropbox\|0penCOR\HModels\CellML 1.1\experiments\periodic-stimulus xml
‘Runtime: vaid.

5 olpus

_images/CellMLAnnotationViewScreenshot09.png
® Opencor
File View Tools Help
noble_model_1962.celnl* 3

@ noble model 1962
4 @ Units
> @ millisecond

@ per g
@ mills_per cm2

@ microF_per_cm2
@ microA_per cm2

B sodium_channel m_gate
B sodium_channel_h gate
B potassium_channel
B potassium_channel_n_gate
> B leakage current
4 @ Groups
Group #1
> & Group 22
4 3 Connections
> 8¢ Connection #1
> 8¢ Connection #2
3% Connection #3
&2 Connection 4
&2 Connection #5
&2 Connection #6
38 Connection #7
&8 Connection #8
&2 Connection 29
&% Connection #10

Edting

Simuation

i 251

About

Help

2 Gene Ontology Browser

Term Detail

voltage-sensitive sodium channel complex
G0:0001518
A sodium channel in a cell membrane whose opening is governed by the membrane

i] ’

Qualfier: poistersondF -] (@)
Term: sodium channel hd
Sodum channel regator acvity © 3
Voltage-gated sodkum channel scvity @
voltage-gated sodum channel bocker cheti L
votage-gated sodhm chanel conplex. © E
Quaiifier Resource u (em =
— o e = &
2
GI Celebrate 25 years with us g

=)

Add the term

_images/pmr_tool_1.png

_images/new-workspace.png
Demonstration workspace for a model

Exposure Information

Workspace Summary

Demo Ussr <demouserers
RI for mercurta

Files

_images/annotation02.png
// i VPH 2014 tutorial - Noble % |

C [teaching.physiomeproject.org/workspace/1c9/rdf_indexer 4% BRov =

Search Site

You are here: Home / Workspaces / VPH 2014 tutoria - Noble 1962 model (andre)

For

RDF Paths
Paths that will be indexed as RDF.

Apply | Apply Changes and Export To RDF Store | i Q)

©2001-2014 - 1UPS Physiome Project. Site Map | Accessibity | Contact

_images/media-playback-start.png

_images/state.png

_images/INa-annotation-step2.png
® 1962_noble_freeRunning
» @ units
v @ Components
> time Tarme sodiam channel]
» @ stimulus_protocol e
> B parameters
model
membrane
Sodium_channel
sodium_channel_m_gate
sodium_channel_h_gate sodium channel regulator activity G0:0017080
potassium_channel
potassium_channel_n_gate
leakage_current voltage-gated sodium channel blocker i CHEBI:38634
v @ Groups
> @ Group #1 Voltage-gated sodium channel complex G0:0001518

> 3¢ Connections }
Qualifier Resource @ /'u term)

bicisVersionOf a0 G0:0001518

sodium channel inhibitor activity

sodium channel modulator

+ B

voltage-gated sodium channel activity G0:0005248

uoneIouLY TWIRD

ining | Al

H
H

Enter Ontology Term- Introduction

‘Search Ontology: (Gene Oriology [GO]

= Developer Resources - The Ontology Lookup Service s
Download Spin-offof the PRIDE project, whict
Implementation Term Name: (Include obsolete terms (¥) mbm;y 25"3# J‘;&Lﬁ;‘

Overview [Voitage-gated sodium channel complex [60:0001518 lookup.

Additional Information: ‘The OLS provides a web service
nterface to query muliple oniologie

_images/screenshot04.png
v/ WMWL\J

File

ceim]

Fitter,
570

[7] socar

¢ Full Screen

V| File Browser

[

elling with CellUL
iology models

 Activation of spaK
« Activation of spaR

 Adrian_Chandler_ Hodgkin. 1970

da B_1000

x

4 & system (@)
o Ui Program Files
40l Users
4B Al
> 5 Contacts
» I Desktop
> 1) Documents
> 8 Downloads
o B Favortes
o Links
o b Music

Edting

DpenOR

Simulation

UoRE3oUY WD

WD Mey

ey

OpenCOR

modelling environment, which can be
used to organise, edit, simulate and
analyse CaIIIL files on Windows,
Linux and OS X. It can be
downloaded here.

Various information about OpenCOR'
and its use can be found in the
following pages:

ErrremE A -

Pl —m— .

8 x

_images/rate.png
L

_images/CellMLAnnotationViewScreenshot08.png
® opencor

File View Tools Help
noble_model_1362.celml (3
@ noble model 1962

P Qualifier: [bosersonof -] (@)
> @ millisecond Term: sodium channel +
> @ permilisecond
' :m':ﬁvn:irmh ‘sodium channel reguiator actvity © coooime (dp] ~
@ pemiliel milisecond voltage-gated sodum channel actty w soomoss (4]
Qe altage gotedsodum o boder o omamn (4]
> @ micro_per cm2 Voltage-gated sodium channel complex L) 3]

+ & Componens i

> B environment

> 8 membrane
> 8 sodium_channel
> @ sodium_channel m_gate There is no metadata associated with the current CellML element...
> B sodium_channel h_gate
> 8 potsssium_channel
> B potsssium_channel n_gate
» B lesksge curent

4 @ Groups GI Celebrate 25 years with us ?
> @& Group#1
b @& Group#2

432 Connections Human D
> & Connection #1
> &% Connection 22
' 5 g:g:::: ? Gene Ontology Browser
> 3 Connectionss “Term Detail
> &% Connection #6.
> &% Connection #7
> &% Connection #8.
> &% Connection #9
> &% Connection #10

Edting

Simuation
RO MEY

ey

A sodium channel in a cell membrane whose opening is governed by the membrane |

<0 I] >

_images/SingleCellViewScreenshot13.png
simple_dse_model.celml (£

dimensionless
dimensionless
dimensionless
Property Value Unit
4 DAEsolver
Name DA
Masimumstep 0 dimensio...

Maximum num... 500
Relative tolerance 1e-07
Absolute toleran... 1e-07

E| ivepsmemn e
h A4 Graphs_
| property Valve
mainc | maina
:
2 Parameters
Property Valve unt
0. 742150515323997 dimensionless
« OSIHOTITIGN3... dimensioniess/dim...
o 0510428897123... dimensionless
®: 0 dimensionless

D:\Dropbox|0penCOR|\Hodels\simple_dae_modeL.cellml
‘Runtime: vaid.

Model type: DAE.
‘Simulation times 0 s using IDA.

5 aipus

_images/user-home.png

_images/main_annotation_1.png
Annotation Tool

Annotation Tool

{port, port, portl
[step, provides, pointcloud]
[step, description, name]
Istep, version, 0.9.0]

_images/plugin_configure_1.png
o

Configure - Zinc Model Source - configuredialog.ui B3

Identifier:
Element File:

Node File:

[cancel |

_images/object-locked.png

_images/exposureeg2.png
You are hare Hame | Exposuees | ondarent, S 2004/ Computer moda! o acton potantal of mouse

Descion)

S ————

Computer model of action potential of mouse ventricular myocytes wiodel curation
(Apical Cell Description) Coraton stas o
Computer model of action potential of mouse ventricular myocytes. con bd

openc i
Model Status

publcason. Ths model represents the APICAL CELL variant a described i Sondarenko e als 204 paper. Derivedfrom morkspace Band